INSTABILITY CRITERIA FOR THE FLOW OF AN INVISCID INCOMPRESSIBLE FLUID

被引:134
作者
FRIEDLANDER, S
VISHIK, MM
机构
[1] UNIV CHICAGO,DEPT MATH,CHICAGO,IL 60637
[2] MOSCOW MATH GEOPHYS INST,MOSCOW 113556,USSR
关键词
D O I
10.1103/PhysRevLett.66.2204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a geometric estimate from below on the growth rate of a small perturbation of a three-dimensional steady flow of an ideal fluid and thus we obtain effective criteria for local instability for Euler's equations. We use these criteria to demonstrate the instability of several simple flows and to show that any flow with a hyperbolic stagnation point is unstable.
引用
收藏
页码:2204 / 2206
页数:3
相关论文
共 9 条
[1]   3-DIMENSIONAL CENTRIFUGAL-TYPE INSTABILITIES IN INVISCID TWO-DIMENSIONAL FLOWS [J].
BAYLY, BJ .
PHYSICS OF FLUIDS, 1988, 31 (01) :56-64
[2]  
CRAIK ADD, 1986, P ROY SOC LOND A MAT, V406, P13, DOI 10.1098/rspa.1986.0061
[3]  
Drazin P.G., 2004, HYDRODYNAMIC STABILI, DOI [10.1017/CBO9780511616938, DOI 10.1017/CBO9780511616938]
[4]   ON THE STABILITY OF ROTATING COMPRESSIBLE AND INVISCID FLUIDS [J].
ECKHOFF, KS ;
STORESLETTEN, L .
JOURNAL OF FLUID MECHANICS, 1980, 99 (JUL) :433-448
[5]   ON STABILITY FOR SYMMETRIC HYPERBOLIC SYSTEMS .1. [J].
ECKHOFF, KS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 40 (01) :94-115
[6]  
Friedlander F.G., 1958, SOUND PULSES
[7]  
LIFSCHITZ A, 1981, PHYS LETT A, V152, P199
[8]   EXACT AND ASYMPTOTIC SOLUTIONS OF THE CAUCHY PROBLEM [J].
LUDWIG, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1960, 13 (03) :473-508
[9]  
VISHIK MM, IN PRESS DYNAMO THEO