Spider major ampullate (dragline) silk is an extracellular fibrous protein with unique characteristics of strength and elasticity. The silk fiber has been proposed to consist of pseudocrystalline regions of antiparallel β-sheet interspersed with elastic amorphous segments. The repetitive sequence of a fibroin protein from major ampullate silk of the spider Nephila clavipes was determined from a partial cDNA clone. The repeating unit is a maximum of 34 amino acids long and is not rigidly conserved. The repeat unit is composed of three different segments: (i) a 6 amino acid segment that is conserved in sequence but has deletions of 3 or 6 amino acids in many of the repeats; (ii) a 13 amino acid segment dominated by a polyalanine sequence of 5-7 residues; (iii) a 15 amino acid, highly conserved segment. The latter is predominantly a Gly-Gly-Xaa repeat with Xaa being alanine, tyrosine, leucine, or glutamine. The codon usage for this DNA is highly selective, avoiding the use of cytosine or guanine in the third position. A model for the physical properties of fiber formation, strength, and elasticity, based on this repetitive protein sequence, is presented.