PROPAGATION IN AN ANISOTROPIC PERIODICALLY MULTILAYERED MEDIUM

被引:49
作者
POTEL, C
DEBELLEVAL, JF
机构
[1] LG2mS, URA CNRS 1505, Universite de Technologie de Compiegne, BP 649, 60206, Compiegne Cedex
关键词
D O I
10.1121/1.405842
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
An anisotropic multilayered medium is studied using the method of transfer matrices, developed by Thomson [J. Appl. Phys. 21, 89 (1950)] and Haskell [Bull. Seismol. Soc. Am. 43, 17 (1953)]. The propagation equations in each layer of the multilayered medium use the form developed by Rokhlin et al. [J. Acoust. Soc. Am. 79, 906-918 (1986); J. Appl. Phys. 59 (11), 3672-3677 (1986)]. Physical explanations are given, notably when a layer is made up of a monoclinic crystal system medium. The displacement amplitudes of the waves in one layer may be expressed as a function of those in another layer using a propagation matrix form, which is equivalent to relating the displacement stresses of a layer to those in another layer. An anisotropic periodically multilayered medium is then studied by using a propagation matrix that has particular properties: a determinant equal to one and eigenvalues corresponding to the propagation of the Floquet waves. An example of such a medium with the axis of symmetry of each layer perpendicular to the interfaces is then presented together with the associated reflection coefficients as a function of the frequency or of the incident angle.
引用
收藏
页码:2669 / 2677
页数:9
相关论文
共 26 条
[1]  
Auld B.A., 1973, ACOUSTIC FIELDS WAVE
[2]   FLOQUET WAVES IN ANISOTROPIC PERIODICALLY LAYERED COMPOSITES [J].
BRAGA, AMB ;
HERRMANN, G .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1992, 91 (03) :1211-1227
[3]  
BRAGA AMB, 1988, WAVE PROGPATION STRU, V90
[4]  
Chimenti D. E., 1990, Journal of Nondestructive Evaluation, V9, P51, DOI 10.1007/BF00566384
[5]  
DATTA SK, 1988, WAVE PROPAGATION STR, V90
[6]  
Deschamps M., 1991, Journal d'Acoustique, V4, P269
[7]  
Dieulesaint E., 1974, ONDES ELASTIQUES SOL
[8]   PROPAGATOR MATRICES IN ELASTIC WAVE AND VIBRATION PROBLEMS [J].
GILBERT, F ;
BACKUS, GE .
GEOPHYSICS, 1966, 31 (02) :326-&
[9]  
HaskellN A., 1953, B SEISMOL SOC AM, V43, P17, DOI [10.1785/BSSA0430010017, DOI 10.1785/BSSA0430010017]
[10]   ANOMALOUS POLARIZATION OF ELASTIC-WAVES IN TRANSVERSELY ISOTROPIC MEDIA [J].
HELBIG, K ;
SCHOENBERG, M .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1987, 81 (05) :1235-1245