NEW ESTIMATES FOR MULTILEVEL ALGORITHMS INCLUDING THE V-CYCLE

被引:99
作者
BRAMBLE, JH [1 ]
PASCIAK, JE [1 ]
机构
[1] BROOKHAVEN NATL LAB,DEPT APPL SCI,UPTON,NY 11973
关键词
D O I
10.2307/2153097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to provide new estimates for certain multilevel algorithms. In particular, we are concerned with the simple additive multilevel algorithm discussed recently together with J. Xu and the standard V-cycle algorithm with one smoothing step per grid. We shall prove that these algorithms have a uniform reduction per iteration independent of the mesh sizes and number of levels, even on nonconvex domains which do not provide full elliptic regularity. For example, the theory applies to the standard multigrid V-cycle on the L-shaped domain, or a domain with a crack, and yields a uniform convergence rate. We also prove uniform convergence rates for the multigrid V-cycle for problems with nonuniformly refined meshes. Finally, we give a new multigrid approach for problems on domains with curved boundaries and prove a uniform rate of convergence for the corresponding multigrid V-cycle algorithms.
引用
收藏
页码:447 / 471
页数:25
相关论文
共 23 条
[1]  
Babuska I., 1972, MATH FDN FINITE ELEM, P1
[2]  
BANK RE, 1981, MATH COMPUT, V36, P35, DOI 10.1090/S0025-5718-1981-0595040-2
[3]   A NEW CONVERGENCE PROOF FOR THE MULTIGRID METHOD INCLUDING THE V-CYCLE [J].
BRAESS, D ;
HACKBUSCH, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (05) :967-975
[4]  
BRAMBLE JH, 1991, MATH COMPUT, V56, P1, DOI 10.1090/S0025-5718-1991-1052086-4
[5]  
BRAMBLE JH, 1991, MATH COMPUT, V57, P1, DOI 10.1090/S0025-5718-1991-1090464-8
[6]   THE ANALYSIS OF SMOOTHERS FOR MULTIGRID ALGORITHMS [J].
BRAMBLE, JH ;
PASCIAK, JE .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :467-488
[7]  
BRAMBLE JH, 1990, MATH COMPUT, V55, P1, DOI 10.1090/S0025-5718-1990-1023042-6
[8]  
BRAMBLE JH, 1987, MATH COMPUT, V49, P311, DOI 10.1090/S0025-5718-1987-0906174-X
[9]  
BRAMBLE JH, 1991, MATH COMPUT, V57, P23, DOI 10.1090/S0025-5718-1991-1079008-4
[10]  
BRAMBLE JH, ANAL MULTIIGRID ALGO