ORMEC - A 3-DIMENSIONAL MHD SPECTRAL INVERSE EQUILIBRIUM CODE

被引:7
作者
HIRSHMAN, SP
HOGAN, JT
机构
关键词
D O I
10.1016/0021-9991(86)90197-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:329 / 352
页数:24
相关论文
共 16 条
[1]   FINITE BETA-STELLARATORS [J].
BAUER, F ;
BETANCOURT, OL ;
GARABEDIAN, PR ;
SHOHET, JL .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1981, 9 (04) :239-243
[2]   NUMERICAL-STUDIES OF NEW STELLARATOR CONCEPTS [J].
BAUER, F ;
BETANCOURT, O ;
GARABEDIAN, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 35 (03) :341-355
[3]  
BAUER F, 1984, MHD EQUILIBRIUM STAB
[4]  
BAUER F, 1978, COMPUTATIONAL METHOD
[5]  
BETANCOURT O, COMMUNICATION
[6]   VARIATIONAL METHOD FOR 3-DIMENSIONAL TOROIDAL EQUILIBRIA [J].
BHATTACHARJEE, A ;
WILEY, JC ;
DEWAR, RL .
COMPUTER PHYSICS COMMUNICATIONS, 1984, 31 (2-3) :213-225
[7]  
HENNEGGER F, 1982, Z NATURFORSCH A, V37, P879
[8]   A CONVERGENT SPECTRAL REPRESENTATION FOR 3-DIMENSIONAL INVERSE MAGNETOHYDRODYNAMIC EQUILIBRIA [J].
HIRSHMAN, SP ;
WEITZNER, H .
PHYSICS OF FLUIDS, 1985, 28 (04) :1207-1209
[9]   STEEPEST-DESCENT MOMENT METHOD FOR 3-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUILIBRIA [J].
HIRSHMAN, SP ;
WHITSON, JC .
PHYSICS OF FLUIDS, 1983, 26 (12) :3553-3568
[10]   VARIATIONAL MOMENT SOLUTIONS TO THE GRAD-SHAFRANOV EQUATION [J].
LAO, LL ;
HIRSHMAN, SP ;
WIELAND, RM .
PHYSICS OF FLUIDS, 1981, 24 (08) :1431-1441