CONSTANT VORTICITY RIABOUCHINSKY FLOWS FROM A VARIATIONAL PRINCIPLE

被引:4
作者
DELILLO, TK
ELCRAT, AR
MILLER, KG
机构
[1] Dept of Mathematics and Statistics, Wichita, 67208-1595, KS
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1990年 / 41卷 / 06期
关键词
D O I
10.1007/BF00945833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Flows with constant vorticity regions bounded by vortex sheets are obtained by minimizing a functional which is the difference of energy in the external (irrotational) flow and the internal flow. In the zero vorticity case this reduces to the functional used by Garabedian, Lewy, and Schiffer for Riabouchinsky's problem. The discretization is done using Schwarz-Christoffel transformations for approximating polygons and FFT's to compute required Dirichlet integrals.
引用
收藏
页码:755 / 765
页数:11
相关论文
共 15 条
[1]   ON STEADY LAMINAR FLOW WITH CLOSED STREAMLINES AT LARGE REYNOLDS NUMBER [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1956, 1 (02) :177-190
[2]   SOLUTIONS OF EULERS EQUATIONS CONTAINING FINITE EDDIES [J].
CHILDRESS, S .
PHYSICS OF FLUIDS, 1966, 9 (05) :860-+
[3]  
GARABEDIAN P, 1964, PARTIAL DIFFERENTIAL, P576
[4]   AXIALLY SYMMETRIC CAVITATIONAL FLOW [J].
GARABEDIAN, PR ;
LEWY, H ;
SCHIFFER, M .
ANNALS OF MATHEMATICS, 1952, 56 (03) :560-602
[5]   THE CALCULATION OF SOME BATCHELOR FLOWS - THE SADOVSKII VORTEX AND ROTATIONAL CORNER FLOW [J].
MOORE, DW ;
SAFFMAN, PG ;
TANVEER, S .
PHYSICS OF FLUIDS, 1988, 31 (05) :978-990
[6]  
Polya G., 1951, ISOPERIMETRIC INEQUA
[7]  
Prandtl L., 1904, 3 INT MATH K HEID, P484
[9]  
Riabouchinsky D., 1921, P LOND MATH SOC, Vs-19, P206
[10]  
Sadovskii V S, 1971, PRIKL MAT MEKH, V35, P773