DIFFERENTIAL REPRESSION OF TRANSCRIPTION FACTOR-BINDING BY HISTONE H1 IS REGULATED BY THE CORE HISTONE AMINO TERMINI

被引:91
作者
JUAN, LJ
UTLEY, RT
ADAMS, CC
VETTESEDADEY, M
WORKMAN, JL
机构
[1] PENN STATE UNIV, INTERCOLL PROGRAM GENET, UNIVERSITY PK, PA 16802 USA
[2] PENN STATE UNIV, CTR GENE REGULAT, UNIVERSITY PK, PA 16802 USA
[3] PENN STATE UNIV, DEPT BIOCHEM & MOLEC BIOL, UNIVERSITY PK, PA 16802 USA
关键词
CHROMATIN; HISTONE H1; NUCLEOSOME; TRANSCRIPTION FACTOR;
D O I
10.1002/j.1460-2075.1994.tb06949.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In order to investigate the interrelated roles of nucleosome cores and histone H1 in transcription repression, we have employed a purified system to analyze the function of H1 in the repression of transcription factor binding to nucleosomes. H1 binding to nucleosome cores resulted in the repression of USF binding to nucleosomes. By contrast, H1 only slightly inhibited the binding of GAL4-AH, indicating that H1 differentially represses the binding of factors with different DNA-binding domains. H1-mediated repression of factor binding was dependent on the core histone aminoterminal tails. Removal of these domains alleviated Hi-mediated repression and increased acetylation of these domains partly alleviated repression by H1. H1 binding assays suggest a less stable interaction of histone H1 with the core particle in the absence of the amino termini.
引用
收藏
页码:6031 / 6040
页数:10
相关论文
共 89 条
[1]   NUCLEOSOME DISPLACEMENT IN TRANSCRIPTION [J].
ADAMS, CC ;
WORKMAN, JL .
CELL, 1993, 72 (03) :305-308
[2]   ROLES OF H-1 DOMAINS IN DETERMINING HIGHER-ORDER CHROMATIN STRUCTURE AND H-1 LOCATION [J].
ALLAN, J ;
MITCHELL, T ;
HARBORNE, N ;
BOHM, L ;
CRANEROBINSON, C .
JOURNAL OF MOLECULAR BIOLOGY, 1986, 187 (04) :591-601
[3]   REGULATION OF THE HIGHER-ORDER STRUCTURE OF CHROMATIN BY HISTONES-H1 AND HISTONES-H5 [J].
ALLAN, J ;
COWLING, GJ ;
HARBORNE, N ;
CATTINI, P ;
CRAIGIE, R ;
GOULD, H .
JOURNAL OF CELL BIOLOGY, 1981, 90 (02) :279-288
[4]   PARTICIPATION OF CORE HISTONE TAILS IN THE STABILIZATION OF THE CHROMATIN SOLENOID [J].
ALLAN, J ;
HARBORNE, N ;
RAU, DC ;
GOULD, H .
JOURNAL OF CELL BIOLOGY, 1982, 93 (02) :285-297
[5]   THE STRUCTURE OF HISTONE-H1 AND ITS LOCATION IN CHROMATIN [J].
ALLAN, J ;
HARTMAN, PG ;
CRANEROBINSON, C ;
AVILES, FX .
NATURE, 1980, 288 (5792) :675-679
[6]   AFFINITY CHROMATOGRAPHIC PURIFICATION OF NUCLEOSOMES CONTAINING TRANSCRIPTIONALLY ACTIVE DNA-SEQUENCES [J].
ALLEGRA, P ;
STERNER, R ;
CLAYTON, DF ;
ALLFREY, VG .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 196 (02) :379-388
[7]  
ANNUNZIATO AT, 1983, J BIOL CHEM, V258, P2675
[8]   TRANSCRIPTION FACTOR ACCESS IS MEDIATED BY ACCURATELY POSITIONED NUCLEOSOMES ON THE MOUSE MAMMARY-TUMOR VIRUS PROMOTER [J].
ARCHER, TK ;
CORDINGLEY, MG ;
WOLFORD, RG ;
HAGER, GL .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (02) :688-698
[9]  
AUSIO J, 1992, J CELL SCI, V102, P1
[10]   PROTEASES AS STRUCTURAL PROBES FOR CHROMATIN - THE DOMAIN-STRUCTURE OF HISTONES [J].
BOHM, L ;
CRANEROBINSON, C .
BIOSCIENCE REPORTS, 1984, 4 (05) :365-386