EFFECTS OF WATER-VAPOR PRESSURE DEFICIT ON PHOTOCHEMICAL AND FLUORESCENCE YIELDS IN TOBACCO LEAF TISSUE

被引:23
作者
PETERSON, RB
机构
[1] Dept. of Biochemistry and Genetics, Connecticut Agric. Exp. Station, Box 1106, New Haven
关键词
D O I
10.1104/pp.92.3.608
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The relationship between photochemical quantum yield (Φs) and fluorescence yield have been investigated in leaf tissue from Nicotiana tabacum using CO2 exchange and a modulated fluorescence measuring system. The quantum yield of CO2 fixation at 1.6% (v/v) O2 and limiting irradiance was reduced 20% by increasing the mean H2O vapor pressure deficit (VPD) from 9.2 to 18.6 mbars. As [CO2] and irradiance were varied, the intrinsic quantum yield of open photosystem II units (Φs/qQ where qQ is the photochemical fluorescence quenching coefficient) declined linearly with the degree of nonphotochemical fluorescence quenching. The slope and y-intercept values for this function were significantly reduced when the mean VPD was 18.4 millibars relative to 8.9 millibars. Susceptibility of the leaf tissue to photoinhibition was unaffected by VPD. Elevated O2 concentrations (20.5% v/v) reduced the intrinsic quantum yield of net CO2 uptake due to the occurrence of O2-reducing processes. However, the relative effect of high VPD compared to low VPD on intrinsic quantum yield was not dependent on the O2 level. This suggests that the Mehler reaction does not mediate the response of quantum yield to elevated VPD. The results are discussed with regard to the possible role of transpiration stress in regulating dissipation of excitation by electron transport pathways other than noncyclic electron flow supporting reduction of CO2 and/or O2.
引用
收藏
页码:608 / 614
页数:7
相关论文
共 24 条
[1]   COMPARISONS OF PHOTOSYNTHETIC RESPONSES OF XANTHIUM-STRUMARIUM AND HELIANTHUS-ANNUUS TO CHRONIC AND ACUTE WATER-STRESS IN SUN AND SHADE [J].
BEN, GY ;
OSMOND, CB ;
SHARKEY, TD .
PLANT PHYSIOLOGY, 1987, 84 (02) :476-482
[2]   REDUCED OSMOTIC POTENTIAL EFFECTS ON PHOTOSYNTHESIS - IDENTIFICATION OF STROMAL ACIDIFICATION AS A MEDIATING FACTOR [J].
BERKOWITZ, GA ;
GIBBS, M .
PLANT PHYSIOLOGY, 1983, 71 (04) :905-911
[3]   FLUORESCENCE QUENCHING IN PHOTOSYSTEM-II OF CHLOROPLASTS [J].
BUTLER, WL ;
KITAJIMA, M .
BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 376 (01) :116-125
[4]   PHOTOINHIBITION AND ZEAXANTHIN FORMATION IN INTACT LEAVES - A POSSIBLE ROLE OF THE XANTHOPHYLL CYCLE IN THE DISSIPATION OF EXCESS LIGHT ENERGY [J].
DEMMIG, B ;
WINTER, K ;
KRUGER, A ;
CZYGAN, FC .
PLANT PHYSIOLOGY, 1987, 84 (02) :218-224
[5]   COMPARISON OF THE EFFECT OF EXCESSIVE LIGHT ON CHLOROPHYLL FLUORESCENCE (77K) AND PHOTON YIELD OF O-2 EVOLUTION IN LEAVES OF HIGHER-PLANTS [J].
DEMMIG, B ;
BJORKMAN, O .
PLANTA, 1987, 171 (02) :171-184
[6]   THE RELATIONSHIP BETWEEN THE REDOX STATE OF QA AND PHOTOSYNTHESIS IN LEAVES AT VARIOUS CARBON-DIOXIDE, OXYGEN AND LIGHT REGIMES [J].
DIETZ, KJ ;
SCHREIBER, U ;
HEBER, U .
PLANTA, 1985, 166 (02) :219-226
[7]   OXYGEN-EXCHANGE ASSOCIATED WITH ELECTRON-TRANSPORT AND PHOTOPHOSPHORYLATION IN SPINACH THYLAKOIDS [J].
FURBANK, RT ;
BADGER, MR .
BIOCHIMICA ET BIOPHYSICA ACTA, 1983, 723 (03) :400-409
[8]  
Horton P., 1987, Progress in Photosynthesis Research. Volume 2, P681
[9]   STUDIES ON THE INDUCTION OF CHLOROPHYLL FLUORESCENCE IN ISOLATED BARLEY PROTOPLASTS .4. RESOLUTION OF NON-PHOTOCHEMICAL QUENCHING [J].
HORTON, P ;
HAGUE, A .
BIOCHIMICA ET BIOPHYSICA ACTA, 1988, 932 (01) :107-115