CYCLIC STRETCHING OF HUMAN OSTEOBLASTS AFFECTS PROLIFERATION AND METABOLISM - A NEW EXPERIMENTAL-METHOD AND ITS APPLICATION

被引:208
作者
NEIDLINGERWILKE, C
WILKE, HJ
CLAES, L
机构
[1] Abteilung Für Unfallchirurgische Forschung Und Biomechanik, Universität Ulm, Ulm
关键词
D O I
10.1002/jor.1100120109
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
We developed an experimental system to stimulate cell cultures by uniform and cyclic biaxial strain of the cell culture surface. The studies reported here were designed to determine the uniformity of the strain distribution, the suitability of the surface for the growth of human osteoblasts, and the effects of strain magnitude on cell proliferation and alkaline phosphatase (AP) activity. Subconfluent cell cultures were grown in rectangular silicone dishes that were stretched cyclically (1 Hz) in the long axis by an electromechanical apparatus that controlled peak stretch and cycle frequency. We applied cyclic strains (1.0, 2.4, 5.3, and 8.8% surface strains) for 15 minutes per day on 3 consecutive days. Phase contrast microscopy confirmed the transfer of dish surface strain to the cells. Stretching of the dish resulted in a homogeneous strain distribution that deviated approximately 0.05% from the applied strain. In comparison with plastic dishes, there was a 20% reduction of cell proliferation on the silicone substrate whereas morphology, AP activity, and total protein content of the cells were similar. The proliferation of human osteoblasts was increased significantly (16.4-100%) by 1% strains, although higher strain magnitudes had lesser (nonsignificant) effects or decreased the mitotic activity of the cells. AP and lactate dehydrogenase activities were not influenced significantly by cyclic strains. This study demonstrates that the cell stretching system is suitable for the investigation of the effects of well defined cyclic strains.
引用
收藏
页码:70 / 78
页数:9
相关论文
共 30 条
[1]  
BENES AJ, 1985, J CELL SCI, V75, P35
[2]   THE TRANSDUCTION OF MECHANICAL FORCE INTO BIOCHEMICAL EVENTS IN BONE-CELLS MAY INVOLVE ACTIVATION OF PHOSPHOLIPASE-A2 [J].
BINDERMAN, I ;
ZOR, U ;
KAYE, AM ;
SHIMSHONI, Z ;
HARELL, A ;
SOMJEN, D .
CALCIFIED TISSUE INTERNATIONAL, 1988, 42 (04) :261-266
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   THE PROLIFERATIVE AND SYNTHETIC RESPONSE OF ISOLATED CALVARIAL BONE-CELLS OF RATS TO CYCLIC BIAXIAL MECHANICAL STRAIN [J].
BRIGHTON, CT ;
STRAFFORD, B ;
GROSS, SB ;
LEATHERWOOD, DF ;
WILLIAMS, JL ;
POLLACK, SR .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1991, 73A (03) :320-331
[5]   THE INOSITOL PHOSPHATE-PATHWAY AS A MEDIATOR IN THE PROLIFERATIVE RESPONSE OF RAT CALVARIAL BONE-CELLS TO CYCLICAL BIAXIAL MECHANICAL STRAIN [J].
BRIGHTON, CT ;
SENNETT, BJ ;
FARMER, JC ;
IANNOTTI, JP ;
HANSEN, CA ;
WILLIAMS, JL ;
WILLIAMSON, J .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1992, 10 (03) :385-393
[6]  
BUCKLEY MJ, 1988, BONE MINER, V4, P225
[7]  
CARTER DR, 1987, CLIN ORTHOP RELAT R, P237
[8]  
CLAES L, 1992, 8TH M EUR SOC BIOM R, P135
[9]  
Cordey J., 1980, CURRENT CONCEPTS INT, P63
[10]  
DARTSCH PC, 1990, MED TEXTILES IMPLANT, P193