WATER-WAVES FOR SMALL SURFACE-TENSION - AN APPROACH VIA NORMAL-FORM

被引:132
作者
IOOSS, G [1 ]
KIRCHGASSNER, K [1 ]
机构
[1] UNIV STUTTGART,DEPT MATH,W-7000 STUTTGART 80,GERMANY
关键词
D O I
10.1017/S0308210500021119
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we determine the possible crest-forms of permanent waves of small amplitude which exist on the free surface of a two-dimensional fluid layer under the influence of gravity and surface tension when the Froude number lambda is close to 1. The Bond number b, measuring surface tension, is assumed to satisfy b < 1/3. We find one-parameter families of periodic waves of two different types, quasiperiodic waves and solitary waves with oscillations at infinity. The existence of true solitary waves is established for a sequence of systems approximating the full Euler equations in every algebraic order of lambda - 1.
引用
收藏
页码:267 / 299
页数:33
相关论文
共 23 条
[1]  
Amick C. J., 1986, IMA VOLUMES MATH ITS, V4
[2]  
AMICK CJ, 1989, ARCH RATION MECH AN, V105, P1
[3]  
AMICK CJ, UNPUB TRAJECTORIES H
[4]  
AMICK CJ, UNPUB SINGULAR PERTU
[6]  
COULLET PH, 1983, SIAM J APPL MATH, V43, P774
[7]  
DIAS F, UNPUB CAPILLARY GRAV
[8]  
ECKHAUS W, 1991, 642 U UTR PREPR
[9]   A SIMPLE GLOBAL CHARACTERIZATION FOR NORMAL FORMS OF SINGULAR VECTOR-FIELDS [J].
ELPHICK, C ;
TIRAPEGUI, E ;
BRACHET, ME ;
COULLET, P ;
IOOSS, G .
PHYSICA D, 1987, 29 (1-2) :95-127
[10]   THE INVERSE FUNCTION THEOREM OF NASH AND MOSER [J].
HAMILTON, RS .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (01) :65-222