CRITICAL-DYNAMICS OF FINITE ISING-MODEL

被引:29
作者
DAURIAC, JCA
MAYNARD, R
RAMMAL, R
机构
关键词
D O I
10.1007/BF01012608
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:307 / 323
页数:17
相关论文
共 10 条
[1]   NEW ALGORITHM FOR MONTE-CARLO SIMULATION OF ISING SPIN SYSTEMS [J].
BORTZ, AB ;
KALOS, MH ;
LEBOWITZ, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :10-18
[2]  
EBERHART, 1970, THESIS U GRENOBLE
[3]   CRITICAL PHENOMENA IN FILMS AND SURFACES [J].
FISHER, ME .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1973, 10 (05) :665-673
[4]   TIME-DEPENDENT STATISTICS OF ISING MODEL [J].
GLAUBER, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) :294-&
[5]  
KLEINROCK L, 1975, QUEUING SYSTEM, V1
[6]   FINITE-SIZE BEHAVIOR OF ISING SQUARE LATTICE [J].
LANDAU, DP .
PHYSICAL REVIEW B, 1976, 13 (07) :2997-3011
[7]   DYNAMICAL CORRELATION-FUNCTIONS IN THE TWO-DIMENSIONAL KINETIC ISING-MODEL - A REAL-SPACE RENORMALIZATION-GROUP APPROACH [J].
MAZENKO, GF ;
HIRSCH, JE ;
NOLAN, MJ ;
VALLS, OT .
PHYSICAL REVIEW LETTERS, 1980, 44 (16) :1083-1086
[8]   MONTE-CARLO INVESTIGATION OF DYNAMIC CRITICAL PHENOMENA IN 2-DIMENSIONAL KINETIC ISING-MODEL [J].
STOLL, E ;
BINDER, K ;
SCHNEIDER, T .
PHYSICAL REVIEW B, 1973, 8 (07) :3266-3289
[9]   STATIC AND DYNAMIC FINITE-SIZE SCALING THEORY BASED ON RENORMALIZATION GROUP APPROACH [J].
SUZUKI, M .
PROGRESS OF THEORETICAL PHYSICS, 1977, 58 (04) :1142-1150
[10]   FINITE SIZE EFFECTS IN THE CRITICAL-DYNAMICS OF THE KINETIC ISING-MODEL [J].
YALABIK, MC ;
GUNTON, JD .
PROGRESS OF THEORETICAL PHYSICS, 1979, 62 (06) :1573-1583