LUMENAL SIDE HISTIDINE MUTATIONS IN THE D1-PROTEIN OF PHOTOSYSTEM-II AFFECT DONOR SIDE ELECTRON-TRANSFER IN CHLAMYDOMONAS-REINHARDTII

被引:78
作者
ROFFEY, RA
KRAMER, DM
GOVINDJEE
SAYRE, RT
机构
[1] OHIO STATE UNIV,DEPT BIOCHEM,COLUMBUS,OH 43210
[2] UNIV ILLINOIS,DIV BIOPHYS,URBANA,IL 61801
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 1994年 / 1185卷 / 03期
关键词
ELECTRON TRANSFER; PHOTOSYNTHESIS; PHOTOSYSTEM II; CHLOROPHYLL A FLUORESCENCE; SITE-DIRECTED MUTAGENESIS;
D O I
10.1016/0005-2728(94)90240-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Site-directed mutants of the D1 protein generated in Chlamydomonas reinhardtii have been characterized to determine whether specific lumenal side histidine residues participate in or directly influence electron transfer. Histidine 195 (H195), a conserved residue located near the amino-terminal end of the D1 transmembrane alpha-helix containing the putative P680 chlorophyll ligand H198, was changed to asparagine (H195N), aspartic acid (H195D), and tyrosine(H195Y). These H195 mutants displayed essentially wild-type rates of electron transfer from the water-oxidizing complex to 2,6-dichlorophenolindophenol. Flash-induced chlorophyll a (Chl a) fluorescence yield rise and decay measurements for Mn-depleted membranes of the H195Y and H195D mutants, however, revealed modified Y-Z to P680(+) electron transfer kinetics. The rate of the variable Chl a fluorescence rise was reduced approximately 10-fold in H195Y and H195D relative to the wild type. In addition, the rate of Chl a fluorescence decay in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea was approximately 50-fold more rapid in H195D than in the wild type. These results can be accommodated by a change in the midpoint potential of Y-Z(+)/Y-Z which is apparent only upon the removal of the Mn cluster. In addition, we have generated a histidine to phenylalanine substitution at histidine 190 (H190), a conserved residue located near the lumenal thylakoid surface of D1 in close proximity to the secondary donor Y-Z. The H190F mutant is characterized by an inability to oxidize water associated with the loss of the Mn cluster and severely altered donor side kinetics. These and other results suggest that H190 may participate in redox reactions leading to the assembly of the Mn cluster.
引用
收藏
页码:257 / 270
页数:14
相关论文
共 64 条
[1]   WATER OXIDATION IN PHOTOSYSTEM .2. FROM RADICAL CHEMISTRY TO MULTIELECTRON CHEMISTRY [J].
BABCOCK, GT ;
BARRY, BA ;
DEBUS, RJ ;
HOGANSON, CW ;
ATAMIAN, M ;
MCINTOSH, L ;
SITHOLE, I ;
YOCUM, CF .
BIOCHEMISTRY, 1989, 28 (25) :9557-9565
[2]   TYROSINE RADICALS ARE INVOLVED IN THE PHOTOSYNTHETIC OXYGEN-EVOLVING SYSTEM [J].
BARRY, BA ;
BABCOCK, GT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (20) :7099-7103
[3]   KINETICS OF PHOTOINHIBITION IN HYDROXYLAMINE-EXTRACTED PHOTOSYSTEM-II MEMBRANES - RELEVANCE TO PHOTOACTIVATION AND SITES OF ELECTRON DONATION [J].
BLUBAUGH, DJ ;
CHENIAE, GM .
BIOCHEMISTRY, 1990, 29 (21) :5109-5118
[4]   EVIDENCE FROM DIRECTED MUTAGENESIS THAT ASPARTATE-170 OF THE D1 POLYPEPTIDE INFLUENCES THE ASSEMBLY AND OR STABILITY OF THE MANGANESE CLUSTER IN THE PHOTOSYNTHETIC WATER-SPLITTING COMPLEX [J].
BOERNER, RJ ;
NGUYEN, AP ;
BARRY, BA ;
DEBUS, RJ .
BIOCHEMISTRY, 1992, 31 (29) :6660-6672
[5]   KINETIC-MODELS FOR THE ELECTRON-DONORS OF PHOTOSYSTEM-II OF PHOTOSYNTHESIS [J].
BOUGESBOCQUET, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1980, 594 (2-3) :85-103
[6]   HISTIDINE OXIDATION IN THE OXYGEN-EVOLVING PHOTOSYSTEM-II ENZYME [J].
BOUSSAC, A ;
ZIMMERMANN, JL ;
RUTHERFORD, AW ;
LAVERGNE, J .
NATURE, 1990, 347 (6290) :303-306
[7]   ELECTRON-TRANSFER REACTIONS IN MANGANESE-DEPLETED PHOTOSYSTEM-II [J].
BUSER, CA ;
THOMPSON, LK ;
DINER, BA ;
BRUDVIG, GW .
BIOCHEMISTRY, 1990, 29 (38) :8977-8985
[9]   INFLUENCE OF AN AMINO-ACID RESIDUE ON THE OPTICAL-PROPERTIES AND ELECTRON-TRANSFER DYNAMICS OF A PHOTOSYNTHETIC REACTION CENTER COMPLEX [J].
BYLINA, EJ ;
KIRMAIER, C ;
MCDOWELL, L ;
HOLTEN, D ;
YOUVAN, DC .
NATURE, 1988, 336 (6195) :182-184
[10]   STUDIES ON THE PHOTOACTIVATION OF THE WATER-OXIDIZING ENZYME .2. CHARACTERIZATION OF WEAK LIGHT PHOTOINHIBITION OF PSII AND ITS LIGHT-INDUCED RECOVERY [J].
CALLAHAN, FE ;
BECKER, DW ;
CHENIAE, GM .
PLANT PHYSIOLOGY, 1986, 82 (01) :261-269