SELF-CONSISTENT THEORY OF NORMAL-TO-SUPERCONDUCTING TRANSITION

被引:38
作者
RADZIHOVSKY, L [1 ]
机构
[1] UNIV CHICAGO,DEPT PHYS,CHICAGO,IL 60637
来源
EUROPHYSICS LETTERS | 1995年 / 29卷 / 03期
关键词
D O I
10.1209/0295-5075/29/3/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
I study the normal-to-superconducting (NS) transition within the Ginzburg-Landau (GL) model, taking into account the fluctuations in the m-component complex order parameter psi(alpha), and the vector potential A in the arbitrary dimension d, for any m. I find that the transition is of second order and that the previous conclusion of the fluctuation-driven first-order transition is a possible artifact of the breakdown of the epsilon-expansion and the inaccuracy of the 1/m-expansion for physical values epsilon = 1, m = 1. I compute the anomalous ri(d, m) exponent at the NS transition, and find eta(3, 1) approximate to - 0.38. In the m--> infinity limit, eta(d, m) becomes exact and agrees with the 1/m-expansion. Near d=4 the theory is also in good agreement with the perturbative E-expansion results for m > 183 and provides a sensible interpolation formula for arbitrary d and m.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 10 条
[1]   PHASE-STRUCTURE OF A LATTICE SUPERCONDUCTOR [J].
BARTHOLOMEW, J .
PHYSICAL REVIEW B, 1983, 28 (09) :5378-5381
[2]   SELF-CONSISTENT SCREENING CALCULATION OF CRITICAL EXPONENT ETA [J].
BRAY, AJ .
PHYSICAL REVIEW LETTERS, 1974, 32 (25) :1413-1416
[3]  
COLEMAN S, 1973, PHYS REV D, V7, P1988
[4]   PHASE-TRANSITION IN A LATTICE MODEL OF SUPERCONDUCTIVITY [J].
DASGUPTA, C ;
HALPERIN, BI .
PHYSICAL REVIEW LETTERS, 1981, 47 (21) :1556-1560
[5]  
DEGENNES PG, 1972, SOLID STATE COMMUN, V10, P573
[6]   FIRST-ORDER PHASE-TRANSITIONS IN SUPERCONDUCTORS AND SMECTIC-A LIQUID-CRYSTALS [J].
HALPERIN, BI ;
LUBENSKY, TC ;
MA, SK .
PHYSICAL REVIEW LETTERS, 1974, 32 (06) :292-295
[7]   ANALOGY BETWEEN SMECTIC A LIQUID-CRYSTALS AND SUPERCONDUCTORS [J].
HALPERIN, BI ;
LUBENSKY, TC .
SOLID STATE COMMUNICATIONS, 1974, 14 (10) :997-1001
[8]  
Litster J.D., 1980, ORDERING STRONGLY FL
[9]   RENORMALIZATION-GROUP TREATMENT OF THE DISLOCATION LOOP MODEL OF THE SMECTIC-A-NEMATIC TRANSITION [J].
TONER, J .
PHYSICAL REVIEW B, 1982, 26 (01) :462-465
[10]  
Zinn-Justin J., 1989, QUANTUM FIELD THEORY