MAXIMUM-NORM ESTIMATES OF RATE OF CONVERGENCE OF DISSIPATIVE DIFFERENCE SCHEMES FOR STRICTLY HYPERBOLIC SYSTEMS

被引:2
作者
BRENNER, P
机构
[1] CHALMERS UNIV TECHNOL,DEPT MATH,GOTHENBURG,SWEDEN
[2] UNIV GOTHENBURG,GOTHENBURG,SWEDEN
关键词
D O I
10.1137/0712054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The rate of convergence in maximum-norm of dissipative difference schemes for strictly hyperbolic systems is given in terms of L//1-smoothness of the initial data. Estimates over the set of mesh-points, and the effect of smoothing the initial data are also considered. For functions with only a finite number of isolated singularities, the estimates obtained often give considerable improvements over those given in terms of L// infinity -smoothness of the initial data.
引用
收藏
页码:726 / 740
页数:15
相关论文
共 15 条
[1]   CAUCHY-PROBLEM FOR SYSTEMS IN LP AND LP ALPHA [J].
BRENNER, P .
ARKIV FOR MATEMATIK, 1973, 11 (01) :75-101
[2]   STABILITY AND CONVERGENCE RATES IN LP FOR CERTAIN DIFFERENCE SCHEMES [J].
BRENNER, P ;
THOMEE, V .
MATHEMATICA SCANDINAVICA, 1970, 27 (01) :5-&
[3]  
BRENNER P, TO BE PUBLISHED
[4]   SPECTRAL SYNTHESIS PROBLEM FOR (N-1)-DIMENSIONAL SUBSETS OF RN, N GREATER THAN OR EQUAL TO 2 [J].
DOMAR, Y .
ARKIV FOR MATEMATIK, 1971, 9 (01) :23-&
[5]   ESTIMATES FOR TRANSLATION INVARIANT OPERATORS IN LP SPACES [J].
HORMANDER, L .
ACTA MATHEMATICA, 1960, 104 (1-2) :93-140
[6]   RESTRICTIONS AND EXTENSIONS OF FOURIER MULTIPLIERS [J].
JODEIT, M .
STUDIA MATHEMATICA, 1970, 34 (02) :215-&
[7]   SMOOTHING OF INITIAL DATA AND RATES OF CONVERGENCE FOR PARABOLIC DIFFERENCE EQUATIONS [J].
KREISS, HO ;
THOMEE, V ;
WIDLUND, O .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1970, 23 (02) :241-&
[8]  
LITTMAN W, 1971, LPLQ ESTIMATES SINGU
[9]  
Littman W., 1963, B AM MATH SOC, V69, P766, DOI DOI 10.1090/S0002-9904-1963-11025-3
[10]  
Lofstrom J., 1970, ANN MAT PUR APPL, V85, P93, DOI 10.1007/BF02413532