TIME-DELAY IN PREY-PREDATOR MODELS .2. BIFURCATION THEORY

被引:43
作者
MACDONALD, N [1 ]
机构
[1] UNIV GLASGOW,DEPT NAT PHILOSOPHY,GLASGOW G12 8QQ,SCOTLAND
关键词
D O I
10.1016/0025-5564(77)90140-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:227 / 234
页数:8
相关论文
共 15 条
[1]  
BOWNDS J N, 1975, Mathematical Biosciences, V26, P41, DOI 10.1016/0025-5564(75)90093-0
[2]   SIMULATION STUDY OF A TIME LAG POPULATION MODEL [J].
CASWELL, H .
JOURNAL OF THEORETICAL BIOLOGY, 1972, 34 (03) :419-+
[3]   PERIODIC-SOLUTIONS OF 2 SPECIES INTERACTION MODELS WITH LAGS [J].
CUSHING, JM .
MATHEMATICAL BIOSCIENCES, 1976, 31 (1-2) :143-156
[4]  
CUSHING JM, TO BE PUBLISHED
[5]   EXISTENCE OF OSCILLATORY SOLUTIONS IN FIELD-NOYES MODEL FOR BELOUSOV-ZHABOTINSKII REACTION [J].
HASTINGS, SP ;
MURRAY, JD .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (03) :678-688
[6]  
HASTINGS SP, TO BE PUBLISHED
[7]  
MACDONALD N, 1976, Mathematical Biosciences, V28, P321, DOI 10.1016/0025-5564(76)90130-9
[8]  
MACDONALD N, TO BE PUBLISHED
[9]   TIME-DELAY VERSUS STABILITY IN POPULATION MODELS WITH 2 AND 3 TROPHIC LEVELS [J].
MAY, RM .
ECOLOGY, 1973, 54 (02) :315-325
[10]  
POORE A B, 1975, Mathematical Biosciences, V26, P99, DOI 10.1016/0025-5564(75)90097-8