CONFORMAL SYMPLECTIC-GEOMETRY, DEFORMATIONS, RIGIDITY AND GEOMETRICAL (KMS) CONDITIONS

被引:24
作者
BASART, H [1 ]
LICHNEROWICZ, A [1 ]
机构
[1] COLL FRANCE, 11 PL MARCELIN BERTHELOT, F-75231 PARIS 05, FRANCE
关键词
D O I
10.1007/BF00398154
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:167 / 177
页数:11
相关论文
共 15 条
[1]  
[Anonymous], 1962, Introduction to Differentiable Manifolds
[2]  
ARAKI H, 1978, LECT NOTES MATH, V650, P66
[3]   DEFORMATION-THEORY APPLIED TO QUANTIZATION AND STATISTICAL-MECHANICS [J].
BASART, H ;
FLATO, M ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
LETTERS IN MATHEMATICAL PHYSICS, 1984, 8 (06) :483-494
[4]  
BASART H, 1984, CR ACAD SCI I-MATH, V299, P405
[5]  
BASART H, 1981, CR ACAD SCI I-MATH, V293, P347
[6]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[7]  
BOURBAKI N, 1967, VARIETES DIFFERNETIE, V1
[8]  
BOURBAKI N, 1971, VARIETES DIFFERNETIE, V2
[9]   EXISTENCE OF STAR-PRODUCTS AND OF FORMAL DEFORMATIONS OF THE POISSON LIE-ALGEBRA OF ARBITRARY SYMPLECTIC-MANIFOLDS [J].
DEWILDE, M ;
LECOMTE, PBA .
LETTERS IN MATHEMATICAL PHYSICS, 1983, 7 (06) :487-496
[10]   STABILITY AND EQUILIBRIUM STATES [J].
HAAG, R ;
KASTLER, D ;
TRYCHPOH.EB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 38 (03) :173-193