CONVERGENT EXPANSIONS FOR TUNNELING

被引:23
作者
COMBES, JM [1 ]
DUCLOS, P [1 ]
SEILER, R [1 ]
机构
[1] CNRS, CTR PHYS THEOR, F-13288 MARSEILLE 2, FRANCE
关键词
D O I
10.1007/BF01210848
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:229 / 245
页数:17
相关论文
共 17 条
[1]  
Akhiezer N.I, 1961, THEORY LINEAR OPERAT
[2]   KREIN FORMULA AND ONE-DIMENSIONAL MULTIPLE-WELL [J].
COMBES, JM ;
DUCLOS, P ;
SEILER, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 52 (02) :257-301
[3]  
COMBES JM, 1981, RIGOROUS ATOMIC MOL, P185, DOI DOI 10.1007/978-1-4613-3350-0_5
[4]  
DAVIES EB, 1983, DOUBLE WELL HAMILTON
[5]  
DIEUDONNE J, 1968, CALCUL INFINITESIMAL, pCH7
[6]   BAND-STRUCTURE OF A ONE-DIMENSIONAL, PERIODIC SYSTEM IN A SCALING LIMIT [J].
HARRELL, EM .
ANNALS OF PHYSICS, 1979, 119 (02) :351-369
[7]   DOUBLE WELLS [J].
HARRELL, EM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 75 (03) :239-261
[8]   NEW APPROACH TO THE SEMI-CLASSICAL LIMIT OF QUANTUM-MECHANICS .1. MULTIPLE TUNNELINGS IN ONE DIMENSION [J].
JONALASINIO, G ;
MARTINELLI, F ;
SCOPPOLA, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 80 (02) :223-254
[9]  
Kato T., 1966, PERTURBATION THEORY
[10]   QUARK CONFINEMENT AND TOPOLOGY OF GAUGE THEORIES [J].
POLYAKOV, AM .
NUCLEAR PHYSICS B, 1977, 120 (03) :429-458