GRID POINT INTERPOLATION ON FINITE REGIONS USING C-1 BOX SPLINES

被引:2
作者
ARGE, E [1 ]
DAEHLEN, M [1 ]
机构
[1] CTR INDUSTRIFORSKNING, N-0314 OSLO 3, NORWAY
关键词
INTERPOLATION; BOX SPLINES; OPTIMIZATION; NONRECTANGULAR SURFACES; (S + 1)-DIRECTION GRID;
D O I
10.1137/0729069
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multivariate grid point interpolation on finite regions is considered by translates of C1 box splines defined on a (s + 1)-direction mesh in R(s). In general, this problem will give more degrees of freedom than the number of interpolation conditions, and hence the problem has no unique solution. Among all interpolants, the one minimizing a smoothing functional is chosen. Two choices of the smoothing functional are proposed, and the related existence and uniqueness problems are studied. Examples showing constructions of box spline surfaces on nonrectangular regions in R2 and rectangular regions in R3 are presented. The method can also be used to construct a smooth interpolant to a set of points given at an almost arbitrary set of grid points in R(s).
引用
收藏
页码:1136 / 1153
页数:18
相关论文
共 19 条
[1]  
Aasen J. O., 1971, BIT (Nordisk Tidskrift for Informationsbehandling), V11, P233, DOI 10.1007/BF01931804
[2]  
[Anonymous], 2016, LINEAR NONLINEAR PRO
[3]  
CHUI CK, 1988, REGIONAL C SER APPL
[4]  
COHEN E, 1984, COMPUT AIDED GEOM DE, V1
[5]   BIVARIATE INTERPOLATION WITH QUADRATIC BOX SPLINES [J].
DAEHLEN, M ;
LYCHE, T .
MATHEMATICS OF COMPUTATION, 1988, 51 (183) :219-230
[6]   ON THE LOCAL LINEAR INDEPENDENCE OF TRANSLATES OF A BOX SPLINE [J].
DAHMEN, W ;
MICCHELLI, CA .
STUDIA MATHEMATICA, 1985, 82 (03) :243-263
[7]   ON THE CONVERGENCE-RATES OF SUBDIVISION ALGORITHMS FOR BOX SPLINE SURFACES [J].
DAHMEN, W ;
DYN, N ;
LEVIN, D .
CONSTRUCTIVE APPROXIMATION, 1985, 1 (04) :305-322
[8]  
De Boor C., 1987, State of the Art in Numerical Analysis. Proceedings of the Joint IMA/SIAM Conference, P87
[9]   BIVARIATE BOX SPLINES AND SMOOTH PP-FUNCTIONS ON A 3 DIRECTION MESH [J].
DEBOOR, C ;
HOLLIG, K .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1983, 9 (01) :13-28
[10]   B-SPLINES FROM PARALLELEPIPEDS [J].
DEBOOR, C ;
HOLLIG, K .
JOURNAL D ANALYSE MATHEMATIQUE, 1982, 42 :99-115