EQUIVARIANT CONSTRAINED SYMPLECTIC INTEGRATION

被引:44
作者
MCLACHLAN, RI [1 ]
SCOVEL, C [1 ]
机构
[1] LOS ALAMOS NATL LAB,COMP RES GRP C3,LOS ALAMOS,NM 87545
关键词
SYMPLECTIC; INTEGRATOR; MOMENTUM; EQUIVARIANT; CONSTRAINED;
D O I
10.1007/BF01212956
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use recent results an symplectic integration of Hamiltonian systems with constraints to construct symplectic integrators on cotangent bundles of manifolds by embedding the manifold in a linear space. We also prove that these methods are equivariant under cotangent lifts of a symmetry group acting linearly on the ambient space and consequently preserve the corresponding momentum. These results provide an elementary construction of symplectic integrators for Lie-Poisson systems and other Hamiltonian systems with symmetry. The methods are illustrated on the free rigid body, the heavy top, and the double spherical pendulum.
引用
收藏
页码:233 / 256
页数:24
相关论文
共 26 条
[1]  
Andersen H.C., Rattle: a ‘velocity’ version of the shake algorithm for molecular dynamics calculations, J. Comput. Phys., 52, pp. 24-34, (1983)
[2]  
Channell P.J., Scovel J.C., Integrators for Lie—Poisson dynamical systems, Physica D, 50, pp. 80-88, (1991)
[3]  
Cooper G.J., Stability of Runge—Kutta methods for trajectory problems, IMA J. Numer. Anal., 7, pp. 1-13, (1987)
[4]  
Feng K., Ge Z., On the approximation of linear H-systems, J. Comput. Math., 6, pp. 88-97, (1988)
[5]  
Ge Z., Marsden J., Lie—Poisson Hamilton—Jacobi theory and Lie—Poisson integrators, Phys. Lett. A, 133, pp. 135-139, (1988)
[6]  
Ge Z., Equivariant symplectic difference schemes and generating functions, Physica D, 49, pp. 376-386, (1991)
[7]  
Ge Z., Generating functions, Hamilton-Jacobi equations and symplectic groupoids on Poisson manifolds, Indiana University Mathematics Journal, 39, 3, pp. 859-876, (1990)
[8]  
Guillemin V., Sternberg S., Symplectic Techniques in Physics, (1984)
[9]  
Leimkuhler B.J., Skeel R.D., Symplectic numerical integration in constrained Hamiltonian systems, J. Comput. Phys., 112, 1, pp. 117-125, (1994)
[10]  
Lewis D., Simo J.C., Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups, J. Nonlinear Sci., 4, pp. 253-299, (1994)