RETROSPECTIVE ESTIMATION AND CORRECTION OF PHYSIOLOGICAL FLUCTUATION IN FUNCTIONAL MRI

被引:365
作者
HU, XP [1 ]
LE, TH [1 ]
PARRISH, T [1 ]
ERHARD, P [1 ]
机构
[1] UNIV MINNESOTA,SCH MED,DEPT RADIOL,MINNEAPOLIS,MN 55455
关键词
FMRI; PHYSIOLOGICAL MOTION CORRECTION; IMAGE PROCESSING; MOTION ARTIFACTS;
D O I
10.1002/mrm.1910340211
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Image-to-image fluctuation due to physiological motion is a major limitation to the accurate detection of neuronal activity with functional MRI. In this paper, a new and general technique for the estimation and compensation of the physiological effects is presented. By simultaneously monitoring the respiration and heart beat during the acquisition of imaging data, and retrospectively synchronizing the imaging data with physiological activity, physiological effects are estimated and removed. This technique does not rely on the periodicity of the respiration or the heart beat, does not affect the signal changes arising from neuronal activation, and is beneficial to images acquired with any speed. Experimental studies performed with FLASH and EPI sequences have demonstrated that the new technique is effective in reducing physiological fluctuation acid improving the sensitivity of functional MRI and is generally applicable.
引用
收藏
页码:201 / 212
页数:12
相关论文
共 58 条
  • [1] Ogawa S., Tank D.W., Menon R., Ellermann J.M., Kim S.-G., Merkle H., Ugurbil K., Intrinsic signal changes accompany‐ing sensory stimulation: functional brain mapping with magnetic resonance imaging, Proc. Natl. Acad. Sci. (USA), 89, pp. 5951-5955, (1992)
  • [2] Bandettini P.A., Wong E.C., Hinks R.S., Tikofsky R.S., Hyde J.S., Time course EPI of human brain function during task activation, Magn. Reson. Med., 25, pp. 390-398, (1992)
  • [3] Kwong K.K., Belliveau J.W., Cheder D.A., Goldberg I.E., Weisskoff R.M., Poncelet B.P., Kennedy D.N., Hoppel B.E., Cohen M.S., Turner R., Cheng H.-M., Brady T.J., Rosen B.R., Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, Proc. Natl. Acad. Sci. (USA), 89, pp. 5675-5679, (1992)
  • [4] Turner R., Jezzard P., Wen H., Kwong K.K., Le D., Zeffiro T., Balaban R.S., Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI, M a p. Reson. Med., 29, pp. 277-279, (1993)
  • [5] Frahm J., Bruhn H., Merboldt K.D., Dynamic MRI of human brain oxygenation during rest and photic stimulation, J. Magn. Reson. Imaging, 2, pp. 501-505, (1992)
  • [6] Blamire A.M., Ogawa S., Ugurbil K., Rothman D., McCarthy G., Ellermann J.M., Hyder F., Rattner Z., Shulman R.G., Dynamic mapping of the human visual cortex by high‐speed magnetic resonance imaging, Proc. Natl. Acad. Sci. (USA), 89, pp. 11069-11073, (1992)
  • [7] Kim S.-G., Ashe J., Georgopoulos A.P., Merkle H., Ellermann J.M., Menon R.S., Ogawa S., Ugurbil K., Functional imaging of human motor cortex at high magnetic fields, J. Neurophysiol., 69, pp. 297-302, (1993)
  • [8] Hinke R.M., Hu X., Stillman A.E., Kim S.-G., Merkle H., Salmi R., Ugurbil K., Functional magnetic resonance imaging of Broca's Area during internal speech, NeuroReport, 4, pp. 675-678, (1993)
  • [9] Constable R.T., McCarthy G., Allison T., Anderson A.W., Gore J.C., Functional brain imaging at 1.5 tesla using conventional gradient echo MR imaging techniques, Magn. Reson. Imaging, 11, pp. 451-459, (1993)
  • [10] Schneider W., Noll D.C., Cohen J.D., Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners, Nature, 365, pp. 150-153, (1993)