SYMBOLIC KINETIC-EQUATION FOR A CHAOTIC ATTRACTOR

被引:26
作者
RECHESTER, AB [1 ]
WHITE, RB [1 ]
机构
[1] PRINCETON UNIV,PLASMA PHYS LAB,PRINCETON,NJ 08544
关键词
D O I
10.1016/0375-9601(91)90720-S
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We used symbolic dynamics to partition into "states" the phase space (coarse graining) of a chaotic attractor. The time evolution equation for a distribution function has been discretized and a closed system of coupled linear equations with constant coefficients has been obtained. We calculated the invariant distribution function and correlation function using these equations and found an excellent agreement with direct time average computations.
引用
收藏
页码:419 / 424
页数:6
相关论文
共 10 条
[1]  
Collet P., 1980, ITERATED MAPS INTERV
[2]   INVARIANT MEASUREMENT OF STRANGE SETS IN TERMS OF CYCLES [J].
CVITANOVIC, P .
PHYSICAL REVIEW LETTERS, 1988, 61 (24) :2729-2732
[3]  
Devaney R. L., 1986, INTRO CHAOTIC DYNAMI
[4]  
JOHNSON D, 1990, BURLINGTON MAG, V132, P72
[5]   FINITE APPROXIMATION FOR FROBENIUS-PERRON OPERATOR - SOLUTION TO ULAMS CONJECTURE [J].
LI, TY .
JOURNAL OF APPROXIMATION THEORY, 1976, 17 (02) :177-186
[6]  
RECHESTER AB, PRINCETON U PREPRINT
[7]  
Ruelle D., 1978, THERMODYNAMIC FORMAL
[8]  
Sinai 7.G., 1972, USP MAT NAUK, V27, P21
[9]  
YAKOBSON M, 1981, COMMUN MATH PHYS, V81, P39
[10]  
[No title captured]