CANONICAL COHERENT STATES FOR THE RELATIVISTIC HARMONIC-OSCILLATOR

被引:8
作者
ALDAYA, V
GUERRERO, J
机构
[1] UNIV VALENCIA, CSIC, CTR MIXTO, IFIC, E-46100 BURJASSOT, SPAIN
[2] UNIV GRANADA, FAC CIENCIAS, INST FIS TEOR & COMPUTAC CARLOS 1, DEPT FIS TEOR & COSMOS, E-18002 GRANADA, SPAIN
关键词
D O I
10.1063/1.531024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper there are constructed manifestly covariant relativistic coherent states on the entire complex plane which reproduce others previously introduced on a given SL(2,R) representation, once a change of variables z is an element of C --> z(D) is an element of E unit disk is performed. Also introduced are higher-order, relativistic creation and annihilation operators, (z) over cap,(z) over cap dagger with canonical commutation relation [(a) over cap, (a) over cap dagger] = 1 rather than the covariant one [(z) over cap, (z) over cap dagger] approximate to energy and naturally associated with the SL(2,R) group. The canonical (relativistic) coherent states are then defined as eigenstates of (a) over cap. Finally, a canonical, minimal representation is constructed in configuration space by means of eigenstates of a canonical position operator. (C) 1995 American Institute of Physics.
引用
收藏
页码:3191 / 3199
页数:9
相关论文
共 36 条
[1]  
ABAHAM R, 1967, F MECHANICS
[2]   FINITE-DIFFERENCE EQUATIONS IN RELATIVISTIC QUANTUM-MECHANICS [J].
ALDAYA, V ;
GUERRERO, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (04) :L137-L145
[3]   HIGHER-ORDER POLARIZATION ON THE POINCARE GROUP AND THE POSITION-OPERATOR [J].
ALDAYA, V ;
BISQUERT, J ;
GUERRERO, J ;
NAVARROSALAS, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20) :5375-5390
[4]   DYNAMICS ON SL(2,R)XU(1) [J].
ALDAYA, V ;
DEAZCARRAGA, JA ;
BISQUERT, J ;
CERVERO, JM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (05) :707-720
[5]   THE RELATIVISTIC BARGMANN TRANSFORM [J].
ALDAYA, V ;
GUERRERO, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (22) :L1175-L1181
[6]   QUANTIZATION AS A CONSEQUENCE OF THE SYMMETRY GROUP - AN APPROACH TO GEOMETRIC-QUANTIZATION [J].
ALDAYA, V ;
DEAZCARRAGA, JA .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (07) :1297-1305
[7]   SYMMETRY AND QUANTIZATION - HIGHER-ORDER POLARIZATION AND ANOMALIES [J].
ALDAYA, V ;
NAVARROSALAS, J ;
BISQUERT, J ;
LOLL, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (09) :3087-3097
[8]  
ALDAYA V, 1991, PHYS LETT A, V156, P351
[9]  
ALDAYA V, UGFT3493
[10]  
[Anonymous], GENERALIZED COHERENT