ON A NEW CLASS OF COMPLETELY INTEGRABLE NONLINEAR-WAVE EQUATIONS .1. INFINITELY MANY CONSERVATION-LAWS

被引:11
作者
NUTKU, Y [1 ]
机构
[1] BOSPHORUS UNIV,ISTANBUL,TURKEY
关键词
D O I
10.1063/1.526530
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1237 / 1242
页数:6
相关论文
共 17 条
[1]   CONSERVATION-LAWS FOR SHALLOW-WATER WAVES ON A SLOPING BEACH [J].
AKYILDIZ, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (09) :1723-1727
[2]  
BEYER RT, 1965, PHYSICAL ACOUSTICS B, V2
[3]  
BJORNO L, 1975, ULTRASONICS INT 1975
[4]   MAKING MASSLESS STRING MASSIVE [J].
CHODOS, A ;
THORN, CB .
NUCLEAR PHYSICS B, 1974, B 72 (03) :509-522
[5]  
COPSON ET, 1974, PARTIAL DIFFERENTIAL
[6]  
EULER L, 1757, HIST ACAD BERLIN, V11, P274
[7]  
FUBINI E, 1935, ALTA FREQ, V5, P530
[8]   ON THE NATURE OF THE GARDNER TRANSFORMATION [J].
KUPERSHMIDT, BA .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (03) :449-451
[9]   KORTEWEG-DE VRIES EQUATION AND GENERALIZATIONS .2. EXISTENCE OF CONSERVATION LAWS AND CONSTANTS OF MOTION [J].
Miura, RM ;
GARDNER, CS ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (08) :1204-+
[10]  
Morse P. M., 1987, THEORETICAL ACOUSTIC