THE RICHTMYER MODIFICATION OF THE FULLY IMPLICIT FINITE-DIFFERENCE ALGORITHM FOR SIMULATIONS OF ELECTROCHEMICAL PROBLEMS

被引:75
作者
MOCAK, J [1 ]
FELDBERG, SW [1 ]
机构
[1] BROOKHAVEN NATL LAB, DEPT APPL SCI, UPTON, NY 11973 USA
关键词
D O I
10.1016/0022-0728(94)87054-3
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The five-level Richtmyer modification of the fully implicit Laasonen finite difference algorithm is shown to exhibit superb accuracy and rapid convergence for the simulation of electrochemical phenomena, supporting the very wide range of values of the dimensionaless diffusion parameter D* (D* = DDELTAt/DELTAx2) from 10 to 10(20). Large values of D* are essential for accurate and efficient simulations of systems involving a wide dynamic range of homogeneous kinetic rates. The performance is tested by simulations of Cottrellian diffusion and executed using a minor modification of Rudolph's fast implicit finite difference algorithm. The accuracy of the simulations is verified by comparing simulated values of time-dependent fluxes and flux integrals and time- and distance-dependent concentrations, with values computed from known analytic solutions.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 15 条
[1]   ELECTROCHEMICAL DIGITAL-SIMULATION - INCORPORATION OF THE CRANK-NICOLSON SCHEME AND N-POINT BOUNDARY EXPRESSION INTO THE RUDOLPH ALGORITHM [J].
BRITZ, D .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1993, 352 (1-2) :17-28
[2]  
BRITZ D, IN PRESS J ELECTROAN
[3]   A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type [J].
Crank, J ;
Nicolson, P .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 6 (3-4) :207-226
[4]  
FELDBERG S, UNPUB
[5]   A FAST QUASI-EXPLICIT FINITE-DIFFERENCE METHOD FOR SIMULATING ELECTROCHEMICAL PHENOMENA .1. APPLICATION TO CYCLIC VOLTAMMETRIC PROBLEMS [J].
FELDBERG, SW .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1990, 290 (1-2) :49-65
[7]  
GOLDSTEIN C, COMMUNICATION
[8]   *UBER EINE METHODE ZUR LOSUNG DER WARMELEITUNGSGLEICHUNG [J].
LAASONEN, P .
ACTA MATHEMATICA, 1949, 81 (03) :309-317
[9]  
MILNE WE, 1949, NUMERICAL CALCULUS, P96
[10]  
NEWMAN J, 1973, ELECTROCHEMICAL SYST, P414