Densities, heat capacities and enthalpies of dilution at 25-degrees-C and osmotic coefficients at 37-degrees-C were measured for N-octyl-, N-decyl- and N-dodecylpyridinium chlorides in water over a wide concentration region. Conductivity measurements were performed in order to evaluate the cmc and the degree of counterion dissociation. Partial molar volumes, heat capacities, relative enthalpies and nonideal free energies and entropies at 25-degrees-C were derived from the experimental data as functions of the surfactant concentration. The changes with concentration of these properties are quite regular with the exception of the heat capacities which display anomalies at about 0.9, 0.25 and 0.12 mol-kg-1 for the octyl, decyl and dodecyl compounds, respectively. At these concentrations there were also changes in the slopes of the specific conductivity and of the product of the osmotic coefficients and the molality vs. concentration. These peculiarities can be ascribed to micelle structural transitions. The thermodynamic functions of micellization were graphically evaluated on the basis of the pseudo-phase transition model. These data have been compared to those for alkyltrimethylammonium bromides and alkylnicotinamide chlorides. It is shown that the introduction of the hydrophilic CONH2 group lowers the hydrophilic character of the pyridinium ring.