INSULIN AND DEXAMETHASONE REGULATE INSULIN-RECEPTORS, INSULIN-RECEPTOR SUBSTRATE-1, AND PHOSPHATIDYLINOSITOL 3-KINASE IN FAO HEPATOMA-CELLS

被引:51
作者
SAAD, MJA [1 ]
FOLLI, F [1 ]
KAHN, CR [1 ]
机构
[1] HARVARD UNIV, BRIGHAM & WOMENS HOSP, SCH MED, DEPT MED, BOSTON, MA 02215 USA
关键词
D O I
10.1210/en.136.4.1579
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Insulin rapidly stimulates tyrosine kinase activity of its receptor, resulting in phosphorylation of the cytosolic substrate, insulin receptor substrate-1 (IRS-1), which, in turn, associates with phosphatidylinositol 3-kinase (PI 3-kinase), thus activating the enzyme. In the present study we have examined these three early postreceptor components of the insulin action pathway in rat hepatoma (Fao) cells and have determined the effects of two hormones that can induce insulin resistance, dexamethasone and insulin. Dexamethasone (1 mu M) induced a time- and dose-dependent increase in insulin receptor levels in Fao cells, reaching 135 +/- 3% of basal levels after 24 h (P < 0.05). There was a simultaneous increase in IRS-I protein to 255 +/- 66% of the control value (P < 0.05) and a parallel increase in IRS-1 phosphorylation. Insulin stimulation of IRS-1-associated PI 3-kinase was also increased by 70% in cells treated with dexamethasone despite only a minimal increase in PI 3-kinase protein, as determined by immunoblotting. Prolonged insulin treatment induced a time- and dose-dependent decrease in insulin receptor and IRS-1 protein levels, reaching nadirs of 40 +/- 4% (P < 0.01) and 15 +/- 6% (P < 0.005) of control levels, respectively, after 24 h with 100 nM insulin. There was also a decrease in the phosphorylation of insulin receptors and IRS-1, a marked decrease in the association between IRS-1 and PI 3-kinase, and an 82% decrease in insulin-stimulated PI 3-kinase activity without a significant change in PI S-kinase protein levels. When cells were exposed to both insulin and dexamethasone, the effect of insulin to reduce insulin receptor and IRS-1 levels and insulin-stimulated IRS-1 phosphorylation dominated. These data suggest that regulation of the insulin receptor, IRS-1, and PI 3-kinase contributes significantly to the insulin resistance induced by chronic hyperinsulinemia, but that glucocorticoid-induced insulin resistance is located beyond these early steps in insulin action. (Endocrinology 136: 1579-1588, 1995!
引用
收藏
页码:1579 / 1588
页数:10
相关论文
共 41 条
[1]  
AMATRUDA IM, 1985, DIABETES METAB REV, V3, P293
[2]  
ARSENIS G, 1986, J BIOL CHEM, V261, P147
[3]   PHOSPHATIDYLINOSITOL 3'-KINASE IS ACTIVATED BY ASSOCIATION WITH IRS-1 DURING INSULIN STIMULATION [J].
BACKER, JM ;
MYERS, MG ;
SHOELSON, SE ;
CHIN, DJ ;
SUN, XJ ;
MIRALPEIX, M ;
HU, P ;
MARGOLIS, B ;
SKOLNIK, EY ;
SCHLESSINGER, J ;
WHITE, MF .
EMBO JOURNAL, 1992, 11 (09) :3469-3479
[4]   INSULIN-RECEPTOR DESENSITIZATION CORRELATES WITH ATTENUATION OF TYROSINE KINASE-ACTIVITY, BUT NOT OF RECEPTOR ENDOCYTOSIS [J].
BLAKE, AD ;
HAYES, NS ;
SLATER, EE ;
STRADER, CD .
BIOCHEMICAL JOURNAL, 1987, 245 (02) :357-364
[5]   EFFECTS OF HYPERCORTISOLEMIA AND DIABETES ON SKELETAL-MUSCLE INSULIN-RECEPTOR FUNCTION-INVITRO AND INVIVO [J].
BLOCK, NE ;
BUSE, MG .
AMERICAN JOURNAL OF PHYSIOLOGY, 1989, 256 (01) :E39-E48
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]  
CARO JF, 1982, J CLIN INVEST, V69, P865
[8]   ANALYSIS OF INSULIN ACTION USING DIFFERENTIATED AND DEDIFFERENTIATED HEPATOMA-CELLS [J].
CRETTAZ, M ;
KAHN, CR .
ENDOCRINOLOGY, 1983, 113 (04) :1201-1209
[9]   EFFECTS OF PREDNISOLONE AND DEXAMETHASONE INVIVO AND INVITRO - STUDIES OF INSULIN BINDING, DEOXYGLUCOSE UPTAKE AND GLUCOSE-OXIDATION IN RAT ADIPOCYTES [J].
DEPIRRO, R ;
GREEN, A ;
KAO, MYC ;
OLEFSKY, JM .
DIABETOLOGIA, 1981, 21 (02) :149-153
[10]  
ENDEMANN G, 1990, J BIOL CHEM, V265, P396