CROSS-SECTIONS OF SOLUTION FUNNELS IN BANACH-SPACES

被引:10
作者
GARAY, BM
机构
关键词
D O I
10.4064/sm-97-1-13-26
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper applies negligibility theory (a part of infinite-dimensional topology) to study the geometry of the failure of Kneser's theorem in infinite-dimensional Banach spaces. In particular, it turns out that arbitrary compact subsets of the infinite-dimensional separable Hilbert space can be represented as cross-sections of solution funnels. For general infinite-dimensional Banach spaces, the existence of initial value problems with exactly two solutions is proved.
引用
收藏
页码:13 / 26
页数:14
相关论文
共 24 条
[1]  
Aronszajn N., 1942, ANN MATH, V43, P730, DOI [10.2307/1968963, DOI 10.2307/1968963]
[2]   INFINITE-DIMENSIONAL DIFFERENTIAL-EQUATIONS [J].
BINDING, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 24 (03) :349-354
[3]   DIFFERENTIABLE FUNCTIONS ON CERTAIN BANACH SPACES [J].
BONIC, R ;
FRAMPTON, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 71 (02) :393-&
[4]  
BURGHELEA D, 1969, ANN MATH, V90, P79
[5]   GENERALIZATION OF VINOGRADS THEOREM FOR DYNAMICAL-SYSTEMS [J].
CARLSON, DH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 11 (01) :193-&
[6]  
DEIMLING K, 1977, LECTURE NOTES MATH, V596
[7]  
DOBROWOLSKI T, 1979, STUD MATH, V65, P115
[8]  
FILIPPOV VV, 1987, DIFF URAVN, V23, P2068
[9]  
GARAY BM, UNPUB FUNKCIAL EKVAC
[10]  
Godunov A. N., 1975, FUNKT ANAL PRIL, V9, p[59, 53]