The total interval number of a tree and the Hamiltonian completion number of its line graph

被引:16
作者
Raychaudhuri, A
机构
[1] Department of Mathematics, College of Staten Island (CUNY), Island, NY 10314, 2800, Victory Blvd, Staten
关键词
combinational problems; discrete mathematics; graph theory; interval graph; total interval number; Hamiltonian path; Hamiltonian completion number; line graph; tree;
D O I
10.1016/0020-0190(95)00163-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we investigate the problem of computing two parameters of a graph: the Total Interval Number TIN(G), and the Hamiltonian Completion Number HCN(G). We show that in case of a triangle-free graph these two parameters (TIN(G) and HCN(L(G)), where L(G) is the line graph of G) are related by a simple formula. We use this relationship to find a polynomial algorithm which determines TIN(G), for a tree G. Then we describe a construction which gives an interval representation of a tree G with TIN(G) number of intervals.
引用
收藏
页码:299 / 306
页数:8
相关论文
共 8 条
[1]  
AIGNER M, 1989, J COMB THEORY B, V46, P7
[2]  
BOESCH FT, 1974, LECT NOTES MATH, V406, P202
[3]  
Golumbic M. C., 1980, ALGORITHMIC GRAPH TH
[4]  
Goodman S., 1974, GRAPH COMBINATOR, P262
[5]   EXTREMAL VALUES OF THE INTERVAL NUMBER OF A GRAPH [J].
GRIGGS, JR ;
WEST, DB .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1980, 1 (01) :1-7
[6]  
HARARY F, 1979, J GRAPH THEOR, V3, P205
[7]  
Kundu S., 1976, Information Processing Letters, V5, P55, DOI 10.1016/0020-0190(76)90080-6
[8]  
ROBERTS FS, 1979, DISCRETE MATH MODELS