A FIXED GRID METHOD FOR THE NUMERICAL-SOLUTION OF PHASE-CHANGE PROBLEMS

被引:11
作者
CLAVIER, L [1 ]
ARQUIS, E [1 ]
CALTAGIRONE, JP [1 ]
GOBIN, D [1 ]
机构
[1] LAB FAST,UA 871,F-91405 ORSAY,FRANCE
关键词
D O I
10.1002/nme.1620372408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A fixed grid method using an updated iterative implicit scheme is developed to solve one-dimensional phase change problems. The temperature field is deduced from the resolution of the governing equations whose discretization takes into account the discontinuous variation of the temperature derivative at the phase change front. At each iteration an updated position of the moving front is found from the resolution of the energy conservation at the solid-liquid interface. The accuracy of the proposed numerical method has been checked on three test problems.
引用
收藏
页码:4247 / 4261
页数:15
相关论文
共 19 条
[1]  
Atthey D, 1974, J I MATHS APPLICS, V13, P353
[2]  
Budak B.M., 1965, COMP MATH MATH PHYS+, V5, P59, DOI [10.1016/0041-5553(65)90005-4, DOI 10.1016/0041-5553(65)90005-4]
[3]  
Carslaw H. S., 1986, CONDUCTION HEAT SOLI
[4]  
Crank J, 1957, Q J MECH APPL MATH, V10, P220
[5]  
Furzeland R.M., 1980, J I MATH APPL, V26, P411
[6]   ANALYSIS OF TWO-DIMENSIONAL MELTING IN RECTANGULAR ENCLOSURES IN PRESENCE OF CONVECTION [J].
GADGIL, A ;
GOBIN, D .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1984, 106 (01) :20-26
[8]   FINITE-DIFFERENCE SOLUTIONS OF SOLIDIFICATION PHASE-CHANGE PROBLEMS - TRANSFORMED VERSUS FIXED GRIDS [J].
LACROIX, M ;
VOLLER, VR .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1990, 17 (01) :25-41
[9]   ANALYSIS OF MIXED CONVECTION MELTING OF A PURE METAL [J].
LACROIX, M .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1990, 17 (04) :401-416
[10]   HEAT CONDUCTION IN A MELTING SOLID [J].
LANDAU, HG .
QUARTERLY OF APPLIED MATHEMATICS, 1950, 8 (01) :81-94