OPTIMIZATION BY MULTICANONICAL ANNEALING AND THE TRAVELING SALESMAN PROBLEM

被引:37
作者
LEE, JY
CHOI, MY
机构
[1] SEOUL NATL UNIV, DEPT PHYS, SEOUL 151742, SOUTH KOREA
[2] UNIV WASHINGTON, DEPT PHYS, SEATTLE, WA 98195 USA
关键词
D O I
10.1103/PhysRevE.50.R651
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose a powerful and general simulated annealing method to study combinatorial optimization problems. It combines the multicanonical method, which samples directly the microcanonical entropy of the system, with an elaborate but straightforward annealing scheme. The information about the local entropy obtained during short Monte Carlo simulations is fully utilized for optimization in an iterative fashion. We present results of an extensive investigation of the traveling salesman problem in a unit square. We estimate the optimal length in the limit of a large number of cities.
引用
收藏
页码:R651 / R654
页数:4
相关论文
共 42 条
[1]   HEURISTIC COMBINATORIAL OPTIMIZATION BY SIMULATED DARWINIAN EVOLUTION - A POLYNOMIAL-TIME ALGORITHM FOR THE TRAVELING SALESMAN PROBLEM [J].
AMBATI, BK ;
AMBATI, J ;
MOKHTAR, MM .
BIOLOGICAL CYBERNETICS, 1991, 65 (01) :31-35
[2]  
[Anonymous], 1986, MONTE CARLO METHODS
[3]  
Beardwood J, 1959, P CAMBRIDGE PHILOS S, V55, P299, DOI [DOI 10.1017/S0305004100034095, 10.1017/S0305004100034095]
[4]  
Berg B. A., 1992, International Journal of Modern Physics C (Physics and Computers), V3, P1083, DOI 10.1142/S0129183192000713
[5]   NEW APPROACH TO SPIN-GLASS SIMULATIONS [J].
BERG, BA ;
CELIK, T .
PHYSICAL REVIEW LETTERS, 1992, 69 (15) :2292-2295
[6]   MULTICANONICAL ALGORITHMS FOR 1ST ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICS LETTERS B, 1991, 267 (02) :249-253
[7]   LOCATING GLOBAL MINIMA IN OPTIMIZATION PROBLEMS BY A RANDOM-COST APPROACH [J].
BERG, BA .
NATURE, 1993, 361 (6414) :708-710
[8]   MULTICANONICAL ENSEMBLE - A NEW APPROACH TO SIMULATE 1ST-ORDER PHASE-TRANSITIONS [J].
BERG, BA ;
NEUHAUS, T .
PHYSICAL REVIEW LETTERS, 1992, 68 (01) :9-12
[9]   THE N-CITY TRAVELING SALESMAN PROBLEM - STATISTICAL-MECHANICS AND THE METROPOLIS ALGORITHM [J].
BONOMI, E ;
LUTTON, JL .
SIAM REVIEW, 1984, 26 (04) :551-568
[10]   BOLTZMANN AND DARWIN STRATEGIES IN COMPLEX OPTIMIZATION [J].
BOSENIUK, T ;
EBELING, W ;
ENGEL, A .
PHYSICS LETTERS A, 1987, 125 (6-7) :307-310