PHOSPHOGLYCERATE KINASE AND TRIOSEPHOSPHATE ISOMERASE FROM THE HYPERTHERMOPHILIC BACTERIUM THERMOTOGA-MARITIMA FORM A COVALENT BIFUNCTIONAL ENZYME COMPLEX

被引:69
作者
SCHURIG, H
BEAUCAMP, N
OSTENDORP, R
JAENICKE, R
ADLER, E
KNOWLES, JR
机构
[1] UNIV REGENSBURG, INST BIOPHYS & PHYS BIOCHEM, D-93040 REGENSBURG, GERMANY
[2] HARVARD UNIV, DEPT CHEM, CAMBRIDGE, MA 02138 USA
关键词
FUSION PROTEIN; GLYCOLYSIS; PROGRAMMED FRAMESHIFT; THERMOSTABILITY; THERMOTOGA MARITIMA;
D O I
10.1002/j.1460-2075.1995.tb07020.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phosphoglycerate kinase (PGK) from the hyperthermophilic bacterium Thermotoga maritima has been purified to homogeneity. A second larger enzyme with PGK activity and identical N-terminal sequence was also found. Surprisingly, this enzyme displayed triosephosphate isomerase (TIM) activity. No other TIM is detectable in T.maritima crude extracts. As shown by ultracentrifugal analysis, PGK is a 43 kDa monomer, whereas the bifunctional PGK-TIM fusion protein is a homotetramer of 240-285 kDa. SDS-PAGE indicated a subunit size of 70 kDa for the fusion protein. Both enzymes show high thermostability. Measurements of the catalytic properties revealed no extraordinary results. pH optima, K-m values and activation energies were found to be in the range observed for other PGKs and TIMs investigated so far. The corresponding pgk and tpi genes are part of the apparent gap operon of T.maritima. This gene segment contains two overlapping reading frames, where the 43 kDa PGK is encoded by the upstream open reading frame, the pgk gene. On the other hand, the 70 kDa PGK-TIM fusion protein is encoded jointly by the pgk gene and the overlapping downstream open reading frame of the tpi gene. A programmed frameshift may be responsible for this fusion. A comparison of the amino acid sequence of both the PGK and the TIM parts of the fusion protein with those of known PGKs and TIMs reveals high similarity to the corresponding enzymes from different procaryotic and eucaryotic organisms.
引用
收藏
页码:442 / 451
页数:10
相关论文
共 67 条
[1]   COMPETITION BETWEEN FRAMESHIFTING, TERMINATION AND SUPPRESSION AT THE FRAMESHIFT SITE IN THE ESCHERICHIA-COLI RELEASE FACTOR-II MESSENGER-RNA [J].
ADAMSKI, FM ;
DONLY, BC ;
TATE, WP .
NUCLEIC ACIDS RESEARCH, 1993, 21 (22) :5074-5078
[2]  
ADLER EA, 1994, THESIS HARVARD U CAM
[3]   RIBOSOME GYMNASTICS - DEGREE OF DIFFICULTY 9.5, STYLE 10.0 [J].
ATKINS, JF ;
WEISS, RB ;
GESTELAND, RF .
CELL, 1990, 62 (03) :413-423
[4]  
ATKINS JF, 1991, ANNU REV GENET, V25, P201
[5]  
AXELROD B, 1953, J BIOL CHEM, V204, P939
[6]   SEQUENCE, STRUCTURE AND ACTIVITY OF PHOSPHOGLYCERATE KINASE - POSSIBLE HINGE-BENDING ENZYME [J].
BANKS, RD ;
BLAKE, CCF ;
EVANS, PR ;
HASER, R ;
RICE, DW ;
HARDY, GW ;
MERRETT, M ;
PHILLIPS, AW .
NATURE, 1979, 279 (5716) :773-778
[7]   CRITICAL IONIZATION STATES IN REACTION CATALYZED BY TRIOSEPHOSPHATE ISOMERASE [J].
BELASCO, JG ;
HERLIHY, JM ;
KNOWLES, JR .
BIOCHEMISTRY, 1978, 17 (15) :2971-2978
[8]   TRIOSEPHOSPHATE ISOMERASE CATALYSIS IS DIFFUSION CONTROLLED - APPENDIX - ANALYSIS OF TRIOSE PHOSPHATE EQUILIBRIA IN AQUEOUS-SOLUTION BY P-31 NMR [J].
BLACKLOW, SC ;
RAINES, RT ;
LIM, WA ;
ZAMORE, PD ;
KNOWLES, JR .
BIOCHEMISTRY, 1988, 27 (04) :1158-1167
[9]   HOW CAN A CATALYTIC LESION BE OFFSET - THE ENERGETICS OF 2 PSEUDOREVERTANT TRIOSEPHOSPHATE ISOMERASES [J].
BLACKLOW, SC ;
KNOWLES, JR .
BIOCHEMISTRY, 1990, 29 (17) :4099-4108
[10]   CHARACTERIZATION OF AN ANCESTRAL TYPE OF PYRUVATE FERREDOXIN OXIDOREDUCTASE FROM THE HYPERTHERMOPHILIC BACTERIUM, THERMOTOGA-MARITIMA [J].
BLAMEY, JM ;
ADAMS, MWW .
BIOCHEMISTRY, 1994, 33 (04) :1000-1007