SKEW-SELFADJOINT FORM FOR SYSTEMS OF CONSERVATION-LAWS

被引:99
作者
TADMOR, E [1 ]
机构
[1] LANGLEY RES CTR,INST COMP APPLICAT SCI & ENGN,HAMPTON,VA 23665
关键词
D O I
10.1016/0022-247X(84)90139-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:428 / 442
页数:15
相关论文
共 12 条
[1]   UNIQUENESS OF SOLUTIONS TO HYPERBOLIC CONSERVATION-LAWS [J].
DIPERNA, RJ .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (01) :137-188
[2]   SYSTEMS OF CONSERVATION EQUATIONS WITH A CONVEX EXTENSION [J].
FRIEDRICHS, KO ;
LAX, PD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1971, 68 (08) :1686-+
[3]  
Gottlieb D., 1977, REGIONAL C SERIES AP
[4]  
GRAMMELTVEDT A, 1969, MON WEATHER REV, V97, P384, DOI 10.1175/1520-0493(1969)097<0384:ASOFSF>2.3.CO
[5]  
2
[6]   ON THE SYMMETRIC FORM OF SYSTEMS OF CONSERVATION-LAWS WITH ENTROPY [J].
HARTEN, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 49 (01) :151-164
[7]  
JOHANSSON O, 1963, NORD TIDSKR INFORM, V3, P97
[8]  
Landau L.D., 1984, ELECTRODYNAMICS CONT, V2nd ed.
[9]  
LAX PD, 1972, CBMS NSF REGIONAL C, V11
[10]   FLUX VECTOR SPLITTING OF THE INVISCID GAS-DYNAMIC EQUATIONS WITH APPLICATION TO FINITE-DIFFERENCE METHODS [J].
STEGER, JL ;
WARMING, RF .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 40 (02) :263-293