FILTERING RANDOM NOISE FROM DETERMINISTIC SIGNALS VIA DATA-COMPRESSION

被引:87
作者
NATARAJAN, BK
机构
[1] Hewlett-Packard Laboratories, Palo Alto
关键词
D O I
10.1109/78.482110
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel technique for the design of filters for random noise, leading to a class of filters called Occam filters. The essence of the technique is that when a lossy data compression algorithm is applied to a noisy signal with the allowed loss set equal to the noise strength, the loss and the noise tend to cancel rather than add. We give two illustrative applications of the technique to univariate signals. We also prove asymptotic convergence bounds on the effectiveness of Occam filters.
引用
收藏
页码:2595 / 2605
页数:11
相关论文
共 12 条
[1]  
DEVORE R, 1992, P IEEE MILITARY COMM
[2]   IDEAL SPATIAL ADAPTATION BY WAVELET SHRINKAGE [J].
DONOHO, DL ;
JOHNSTONE, IM .
BIOMETRIKA, 1994, 81 (03) :425-455
[3]  
FELLER W, 1957, INTRO PROBABILITY TH, V2
[4]  
IMAI K, 1986, J INFORM PROCESSING, V9, P159
[5]  
KONSTANTINIDES K, IN PRESS IEEE T SIGN
[6]  
NATARAJAN B, 1993, P DAT COMPR C DCC 93, P60
[7]  
Natarajan B. K., 1994, Proceedings DCC '94. Data Compression Conference (Cat. No.94TH0626-2), P440, DOI 10.1109/DCC.1994.305951
[8]  
NATARAJAN BK, 1991, HPL9136 HEWL PACK LA
[9]  
NATARAJAN BK, 1993, P ACM C COMPUT LEARN
[10]  
Pollard D., 1984, CONVERGENCE STOCHAST