QUANTUM STRING SCATTERING BY GRAVITATIONAL SHOCK-WAVES

被引:14
作者
COSTA, MEV
DEVEGA, HJ
机构
[1] LPTHE, Laboratoire Associé au CNRS, UA 280. Université Pierre et Marie Curie, 75252 Paris Cedex 05, Tour 16, 1eretage, 4, place Jussieu
关键词
D O I
10.1016/0003-4916(91)90205-M
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The two-point amplitude, A2(k2, k1), describing the scattering of the lowest string excitation (the tachyon) by a gravitational shock wave (GSW) is computed. For this purpose, we use the appropriate vertex operator in the GSW background. We explicitly evaluate A2(k2, k1) for large impact parameters q. It is given by the Coulombian amplitude plus string corrections of order s q (s = (k1 + k2)2), for large q. These string corrections produce an infinite sequence of imaginary poles in s, the semi-infinite sequence of Coulomb poles noticed by 't Hooft always remaining present. © 1991.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 12 条
[1]   NONPERTURBATIVE COMPUTATION OF THE WEYL ANOMALY FOR A CLASS OF NONTRIVIAL BACKGROUNDS [J].
AMATI, D ;
KLIMCIK, C .
PHYSICS LETTERS B, 1989, 219 (04) :443-447
[2]   CLASSICAL AND QUANTUM-GRAVITY EFFECTS FROM PLANCKIAN ENERGY SUPERSTRING COLLISIONS [J].
AMATI, D ;
CIAFALONI, M ;
VENEZIANO, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1988, 3 (07) :1615-1661
[3]   VERTEX OPERATORS IN BACKGROUND FIELDS [J].
CALLAN, CG ;
GAN, Z .
NUCLEAR PHYSICS B, 1986, 272 (3-4) :647-660
[4]   STRINGS IN GRAVITATIONAL SHOCK-WAVE BACKGROUNDS [J].
COSTA, MEV ;
DEVEGA, HJ .
ANNALS OF PHYSICS, 1991, 211 (02) :223-234
[5]   PARTICLE SCATTERING AT THE PLANCK SCALE AND THE AICHELBURG SEXL GEOMETRY [J].
DEVEGA, HJ ;
SANCHEZ, N .
NUCLEAR PHYSICS B, 1989, 317 (03) :731-756
[6]   QUANTUM STRING SCATTERING IN THE AICHELBURG SEXL GEOMETRY [J].
DEVEGA, HJ ;
SANCHEZ, N .
NUCLEAR PHYSICS B, 1989, 317 (03) :706-730
[7]  
GRADSHTEYN II, 1979, TABLES INTEGRALS SER
[8]   PLANE-WAVES IN EFFECTIVE FIELD-THEORIES OF SUPERSTRINGS [J].
GUVEN, R .
PHYSICS LETTERS B, 1987, 191 (03) :275-281
[9]   SPACETIME SINGULARITIES IN STRING THEORY [J].
HOROWITZ, GT ;
STEIF, AR .
PHYSICAL REVIEW LETTERS, 1990, 64 (03) :260-263
[10]  
NAIMARK M, 1979, THEORIE REPRESENTATI