STABLE SUBHARMONIC SOLUTIONS IN PERIODIC REACTION-DIFFUSION EQUATIONS

被引:14
作者
DANCER, EN
HESS, P
机构
[1] UNIV SYDNEY,SCH MATH & STAT,SYDNEY,NSW 2006,AUSTRALIA
[2] UNIV ZURICH,INST MATH,CH-8001 ZURICH,SWITZERLAND
关键词
D O I
10.1006/jdeq.1994.1032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an example of a T-periodic semilinear reaction-diffusion equation whose elliptic part is in divergence form for each t, and which admits stable periodic solutions of higher minimal period. Thus there is no generic convergence to T-periodic solutions. This is in sharp contrast to the autonomous case, where the existence of a Lyapunov function implies quasiconvergence for all bounded solutions. (C) 1994 Academic Press, Inc.
引用
收藏
页码:190 / 200
页数:11
相关论文
共 13 条
[1]  
Crandall MG., 1971, J FUNCT ANAL, V8, P321, DOI DOI 10.1016/0022-1236(71)90015-2
[2]   THE EFFECT OF DOMAIN SHAPE ON THE NUMBER OF POSITIVE SOLUTIONS OF CERTAIN NONLINEAR EQUATIONS .2. [J].
DANCER, EN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 87 (02) :316-339
[3]  
DANCER EN, 1991, J REINE ANGEW MATH, V419, P125
[4]  
DANCER EN, 1975, P LOND MATH SOC, V30, P76
[5]  
Hale JK., 1978, NONLINEAR ANAL, V2, P77, DOI DOI 10.1016/0362-546X(78)90043-3
[6]  
HESS P, BOUNDEDNESS PRIME PE
[7]   STABILITY AND CONVERGENCE IN STRONGLY MONOTONE DYNAMICAL-SYSTEMS [J].
HIRSCH, MW .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 383 :1-53
[9]  
POLACIK P, IN PRESS ARCH RATION
[10]   CONVERGENCE FOR STRONGLY ORDER-PRESERVING SEMIFLOWS [J].
SMITH, HL ;
THIEME, HR .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (04) :1081-1101