HARMONICS IN MULTIPLICATIVE AND ADDITIVE NOISE - PARAMETER-ESTIMATION USING CYCLIC STATISTICS

被引:62
作者
GIANNAKIS, GB
ZHOU, GT
机构
[1] Department of Electrical Engineering, University of Virginia, Charlottesville
关键词
D O I
10.1109/78.414790
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of concern here is parameter estimation of harmonics in the presence of multiplicative and additive noise. Cyclic statistics are employed to estimate the frequencies and phases, after which the time series is demodulated and cumulants of the noise processes are estimated. The latter are then supplied to linear or nonlinear cumulant-based algorithms to identify ARMA model parameters for the noises. Cyclic statistics and higher order spectra-based approaches are shown to yield the same frequency estimates. Simulation examples illustrate the algorithms.
引用
收藏
页码:2217 / 2221
页数:5
相关论文
共 12 条
[1]   ON ESTIMATING THE FREQUENCY OF A SINUSOID IN AUTOREGRESSIVE MULTIPLICATIVE NOISE [J].
BESSON, O ;
CASTANIE, F .
SIGNAL PROCESSING, 1993, 30 (01) :65-83
[2]  
Brillinger D., 1981, TIME SERIES DATA ANA
[3]   ASYMPTOTIC THEORY OF MIXED TIME AVERAGES AND KTH-ORDER CYCLIC-MOMENT AND CUMULANT STATISTICS [J].
DANDAWATE, AV ;
GIANNAKIS, GB .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (01) :216-232
[4]   4TH-ORDER SPECTRA OF GAUSSIAN AMPLITUDE-MODULATED SINUSOIDS [J].
DWYER, RF .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1991, 90 (02) :918-926
[5]  
Franks L. E., 1980, IEEE T COMMUN, P1107
[6]  
Gardner W, 1994, CYCLOSTATIONARITY CO
[7]   A UNIFYING MAXIMUM-LIKELIHOOD VIEW OF CUMULANT AND POLYSPECTRAL MEASURES FOR NON-GAUSSIAN SIGNAL CLASSIFICATION AND ESTIMATION [J].
GIANNAKIS, GB ;
TSATSANIS, MK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :386-406
[8]  
GIANNAKIS GB, 1992, AUTOMATICA, V38, P771
[9]  
Hurd H. L., J TIME SER ANAL, V12, P337, DOI DOI 10.1111/J.1467-9892.1991.TB00088.X
[10]   MULTIPLICATIVE NOISE MODELS - PARAMETER-ESTIMATION USING CUMULANTS [J].
SWAMI, A .
SIGNAL PROCESSING, 1994, 36 (03) :355-373