BROAD-BAND EXCITATION IN THE QUADRUPOLE ION-TRAP MASS-SPECTROMETER USING SHAPED PULSES CREATED WITH THE INVERSE FOURIER-TRANSFORM

被引:93
作者
JULIAN, RK [1 ]
COOKS, RG [1 ]
机构
[1] PURDUE UNIV,DEPT CHEM,W LAFAYETTE,IN 47907
关键词
D O I
10.1021/ac00062a006
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper reports on broad-band excitation of ions in the quadrupole ion trap mass spectrometer (ITMS) using shaped pulses. In place of a single-frequency excitation signal, applied to the end caps of the ITMS, a shaped pulse which excites a broad spectrum of frequencies is used. Shaped pulses are time domain signals created by taking the complex inverse Fourier transform of a frequency domain function whose magnitude represents the desired excitation spectrum. In mass spectrometry these signals are termed SWIFT (stored wave form inverse Fourier transform) pulses. By selection of a frequency spectrum which includes ion secular frequencies, SWIFT pulses can be constructed to excite a wide range of m/z values in the quadrupole ion trap. Using the phase modulation method described by Chen et al., the frequency domain spectrum is converted to a complex function prior to being transformed to the time domain. The time domain signal is then processed and loaded into an arbitrary wave form generator (ARB) connected to the end-cap electrodes and applied in a dipolar fashion. Three basic applications of SWIFT pulses are demonstrated in the quadrupole ion trap: (i) broad-band ejection of desorbed matrix ions by application of SWIFT pulses during ion injection from an external source, (ii) broad-band ejection of trapped ions for selective ion isolation, (iii) broad-band excitation which results in collision-induced dissociation (CID) of selected ions. Applying SWIFT pulses while ions are being injected from a Cs+ desorption source results in ejection of matrix ions, which reduces space charge and greatly improves parent ion intensity and overall sensitivity. SWIFT pulses are effective at ejecting ions which have been stored for ion isolation, and the method shows good mass resolution.
引用
收藏
页码:1827 / 1833
页数:7
相关论文
共 26 条
  • [1] PHASE-MODULATED STORED WAVE-FORM INVERSE FOURIER-TRANSFORM EXCITATION FOR TRAPPED ION MASS-SPECTROMETRY
    CHEN, L
    WANG, TCL
    RICCA, TL
    MARSHALL, AG
    [J]. ANALYTICAL CHEMISTRY, 1987, 59 (03) : 449 - 454
  • [2] FREQUENCY-SWEEP FOURIER-TRANSFORM ION-CYCLOTRON RESONANCE SPECTROSCOPY
    COMISARO.MB
    MARSHALL, AG
    [J]. CHEMICAL PHYSICS LETTERS, 1974, 26 (04) : 489 - 490
  • [3] FOURIER-TRANSFORM ION-CYCLOTRON RESONANCE SPECTROSCOPY
    COMISAROW, MB
    MARSHALL, AG
    [J]. CHEMICAL PHYSICS LETTERS, 1974, 25 (02) : 282 - 283
  • [4] DEMELT HG, 1967, ADV MOL PHYS, V3, P53
  • [5] EMBREE PM, 1991, LANGUAGE ALGORITHMS
  • [6] FISCHER E, 1959, Z PHYS, V156, P26
  • [7] GENERAL-THEORY OF EXCITATION IN ION-CYCLOTRON RESONANCE MASS-SPECTROMETRY
    GROSSHANS, PB
    MARSHALL, AG
    [J]. ANALYTICAL CHEMISTRY, 1991, 63 (18) : 2057 - 2061
  • [8] TANDEM-IN-SPACE AND TANDEM-IN-TIME MASS-SPECTROMETRY - TRIPLE QUADRUPOLES AND QUADRUPOLE ION TRAPS
    JOHNSON, JV
    YOST, RA
    KELLEY, PE
    BRADFORD, DC
    [J]. ANALYTICAL CHEMISTRY, 1990, 62 (20) : 2162 - 2172
  • [9] JULIAN RK, IN PRESS INT J MASS
  • [10] OPERATION OF A QUADRUPOLE ION TRAP MASS-SPECTROMETER TO ACHIEVE HIGH MASS CHARGE RATIOS
    KAISER, RE
    COOKS, RG
    STAFFORD, GC
    SYKA, JEP
    HEMBERGER, PH
    [J]. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES, 1991, 106 : 79 - 115