FUZZY-LOGIC AND ARITHMETICAL HIERARCHY

被引:29
作者
HAJEK, P
机构
[1] Institute of Computer Science, Academy of Sciences
关键词
LOGIC; COMPLETENESS; UNDECIDABILITY;
D O I
10.1016/0165-0114(94)00299-M
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The aim of the paper is to show that fuzzy propositional logic (Pavelka's extension of real-valued Lukasiewicz's propositional logic) is a simple and elegant logical calculus but, on the other hand, it is badly undecidable (more undecidable than the classical Boolean propositional calculus).
引用
收藏
页码:359 / 363
页数:5
相关论文
共 11 条
[1]  
BIACINO L, 1986, 45 U STUD NAP PREPR
[2]  
GOTTWALD S, 1988, MEHRWERTIGE LOGIK
[3]  
NOVAK V, 1990, KYBERNETIKA, V26, P47
[4]  
NOVAK V, 1990, KYBERNETIKA, V26, P134
[5]  
NOVAK V, 1993, ULTRAPRODUCT THEOREM
[6]  
NOVAK V, 1994, FUZZY LOGIC REVISITE
[7]   FUZZY LOGIC .1. MANY-VALUED RULES OF INFERENCE [J].
PAVELKA, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (01) :45-52
[8]   FUZZY LOGIC .2. ENRICHED RESIDUATED LATTICES AND SEMANTICS OF PROPOSITIONAL CALCULI [J].
PAVELKA, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (02) :119-134
[9]   FUZZY LOGIC .3. SEMANTICAL COMPLETENESS OF SOME MANY-VALUED PROPOSITIONAL CALCULI [J].
PAVELKA, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (05) :447-464
[10]  
Rogers Jr. H., 1967, MCGRAW HILL SERIES H