LOCATION OF ZEROS OF CHROMATIC AND RELATED POLYNOMIALS OF GRAPHS

被引:55
作者
BRENTI, F
ROYLE, GF
WAGNER, DG
机构
[1] UNIV WESTERN AUSTRALIA,DEPT COMP SCI,PERTH,WA,AUSTRALIA
[2] UNIV WATERLOO,DEPT COMBINATOR & OPTIMIZAT,WATERLOO N2L 3G1,ONTARIO,CANADA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1994年 / 46卷 / 01期
关键词
D O I
10.4153/CJM-1994-002-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the location of zeros of four related classes of polynomials, one of which is the class of chromatic polynomials of graphs. All of these polynomials are generating functions of combinatorial interest. Extensive calculations indicate that these polynomials often have only real zeros, and we give a variety of theoretical results which begin to explain this phenomenon. In the course of the investigation we prove a number of interesting combinatorial identities and also give some new sufficient conditions for a polynomial to have only real zeros.
引用
收藏
页码:55 / 80
页数:26
相关论文
共 40 条
[1]   LIMITS OF CHROMATIC ZEROS OF SOME FAMILIES OF MAPS [J].
BERAHA, S ;
KAHANE, J ;
WEISS, NJ .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (01) :52-65
[2]  
Beraha S., 1978, ADV MATH S, V1, P213
[3]  
Biggs N., 1974, CAMBRIDGE TRACTS MAT, V67
[4]  
Biggs N.L., 1972, J COMB THEORY B, V12, P123
[5]  
Birkhoff G.D., 1912, ANN MATH, V14, P42, DOI DOI 10.2307/1967597
[6]  
BIRKHOFF GD, 1946, T AM MATH SOC, V60, P3255
[7]  
BJORNER A, 1980, B AM MATH SOC, V4, P187
[8]   EXPANSIONS OF CHROMATIC POLYNOMIALS AND LOG-CONCAVITY [J].
BRENTI, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 332 (02) :729-756
[9]  
BRENTI F, 1989, MEM AM MATH SOC, V413
[10]   CATALOGING THE GRAPHS ON 10 VERTICES [J].
CAMERON, RD ;
COLBOURN, CJ ;
READ, RC ;
WORMALD, NC .
JOURNAL OF GRAPH THEORY, 1985, 9 (04) :551-562