SAUSAGES ARE GOOD PACKINGS

被引:18
作者
BETKE, U [1 ]
HENK, M [1 ]
WILLS, JM [1 ]
机构
[1] TECH UNIV BERLIN,INST MATH,D-10623 BERLIN,GERMANY
关键词
D O I
10.1007/BF02574046
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let B-d be the d-dimensional unit ball and, for an integer n, let C-n = {x(1), ..., x(n)} be a packing set for B-d, i.e., \x(i) - x(j)\ greater than or equal to 2, 1 less than or equal to i < j less than or equal to n. We show that for every rho < root 2 a dimension d(rho) exists such that, for d greater than or equal to d(rho), V(conv(C-n) + rho B-d) greater than or equal to V(conv(S-n) + rho B-d), where S-n is a ''sausage'' arrangement of n balls, holds. This gives considerable improvement to Fejes Toth's ''sausage'' conjecture in high dimensions. Further, we prove that, for every convex body K and rho < 1/32d(-2), V(conv(C-n) + rho K) greater than or equal to V(conv(S-n) + rho K), where C-n is a packing set with respect to K and S-n is a minimal ''sausage'' arrangement of K, holds.
引用
收藏
页码:297 / 311
页数:15
相关论文
共 18 条
[1]  
BETKE J, 1994, J REINE ANGEW MATH, V453, P165
[2]   SLICES OF TOTH,L.,FEJES SAUSAGE CONJECTURE [J].
BETKE, U ;
GRITZMANN, P ;
WILLS, JM .
MATHEMATIKA, 1982, 29 (58) :194-201
[3]   The minimum value of quadratic forms, and the closest packing of spheres [J].
Blichfeldt, HF .
MATHEMATISCHE ANNALEN, 1929, 101 :605-608
[4]  
CONWAY JH, 1993, SPHERE PACKAGES LATT
[5]  
GRITZMANN P, 1993, HDB CONVEX GEOMETRY, VB, P861
[6]  
Groemer H., 1960, MATH Z, V73, P285
[7]  
Groemer H., 1963, MATH Z, V81, P260, DOI DOI 10.1007/BF01111546
[8]  
GRUBER PM, 1987, GEOMETRY NUMBERS
[9]  
John F., 1948, STUDIES ESSAYS PRESE, P187, DOI DOI 10.1007/978-3-0348-0439-4_9
[10]  
Kabatyanskii G. A., 1978, Problems of Information Transmission, V14, P1