COMPUTER VISION AND ARTIFICIAL-INTELLIGENCE IN MAMMOGRAPHY

被引:147
作者
VYBORNY, CJ [1 ]
GIGER, ML [1 ]
机构
[1] UNIV CHICAGO, DEPT RADIOL, KURT ROSSMANN LABS RADIOL IMAGING RES, CHICAGO, IL 60637 USA
关键词
D O I
10.2214/ajr.162.3.8109525
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The revolution in digital computer technology that has made possible new and sophisticated imaging techniques may next influence the interpretation of radiologic images. In mammography, computer vision and artificial intelligence techniques have been used successfully to detect or to characterize abnormalities on digital images. Radiologists supplied with this information often perform better at mammographic detection or characterization tasks in observer studies than do unaided radiologists. This technology therefore could decrease errors in mammographic interpretation that continue to plague human observers.
引用
收藏
页码:699 / 708
页数:10
相关论文
共 84 条
[1]  
ACKERMAN LV, 1973, CANCER-AM CANCER SOC, V31, P342, DOI 10.1002/1097-0142(197302)31:2<342::AID-CNCR2820310212>3.0.CO
[2]  
2-I
[3]  
ACKERMAN LV, 1972, CANCER, V30, P1025, DOI 10.1002/1097-0142(197210)30:4<1025::AID-CNCR2820300425>3.0.CO
[4]  
2-7
[5]   PROTOCOL AND RESULTS OF TRAINING NONRADIOLOGISTS TO SCAN MAMMOGRAMS [J].
ALCORN, FS ;
ODONNELL, E ;
ACKERMAN, LV .
RADIOLOGY, 1971, 99 (03) :523-&
[6]  
ASTLEY S, 1993, P SOC PHOTO-OPT INS, V1905, P716, DOI 10.1117/12.148683
[7]  
Ballard DH, 1982, COMPUTER VISION
[8]  
BANKMAN IN, 1993, P SOC PHOTO-OPT INS, V1905, P731, DOI 10.1117/12.148684
[9]  
BASSETT LW, 1992, RADIOL CLIN N AM, V30, P93
[10]   BREAST-CANCER DETECTION - ONE VERSUS 2 VIEWS [J].
BASSETT, LW ;
BUNNELL, DH ;
JAHANSHAHI, R ;
GOLD, RH ;
ARNDT, RD ;
LINSMAN, J .
RADIOLOGY, 1987, 165 (01) :95-97