ROBUST STABILITY OF STATE-FEEDBACK CONTROL OF PWM DC-DC PUSH-PULL CONVERTER

被引:31
作者
CZARKOWSKI, D
PUJARA, LR
KAZIMIERCZUK, MK
机构
[1] Department of Electrical Engineering, Wright State University, Dayton
[2] Department of Electrical Engineering, University of Florida, Gainesville
[3] Department of Electrical Engineering, Wright State University, Dayton
关键词
D O I
10.1109/41.345854
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A state-feedback control strategy was recently used to design a pulse-width modulated (PWM) power converter which accommodates disturbances as long as the system remains stable. A robust stability analysis of the closed-loop PWM push-pull dc-dc power converter with a state feedback is presented by using the Kharitonov theorem.
引用
收藏
页码:108 / 111
页数:4
相关论文
共 11 条
[1]  
Sira-Ramirez H.J., Switched control of bilinear converters via pseudolinearization, IEEE Trans. Circuits Syst., 36, pp. 858-865, (1989)
[2]  
Sira-Ramirez H.J., Ilic-Spong M., Exact linearization in switched-mode dc-to-dc power converters, Int. J. Contr., 50, pp. 511-524, (1991)
[3]  
Chen F., Cai X.S., Design of feedback control laws for switching regulators based on the bilinear large signal models, IEEE Trans. Power Electron., 5, pp. 236-240, (1990)
[4]  
Sira-Ramirez H.J., Lischinsky-Arenas P., Differential algebraic approach in non-linear dynamical compensator design for dc-to-dc power converters, Int. J. Contr., 54, pp. 111-133, (1991)
[5]  
Leung F.H.F., Tam P.K.S., Li C.K., The control of switching dc-dc converters—A general LQR problem, IEEE Trans. Ind. Electron., 38, pp. 65-71, (1991)
[6]  
Czarkowski D., Kazimierczuk M.K., Integral control of PWM dc-dc buck-derived converters, pp. 776-781, (1992)
[7]  
Czarkowski D., Kazimierczuk M.K., Static- and dynamic-circuit models of PWM buck-derived dc-dc converters, IEE Proc., Pt. G, Circuits, Devices and Syst., 139, pp. 669-679, (1992)
[8]  
Van de Vegte J., Feedback Control Systems, pp. 351-372, (1994)
[9]  
Kharitonov C.L., Asymptotic stability of an equilibrium position of family of linear differential equations, Differensialnye uravneniya (in Russian), Differential Equations, 14, pp. 2086-2088
[10]  
Pujara L.R., On the stability of uncertain polynomials with dependent coefficients, IEEE Trans. Automat. Contr., 35, pp. 756-759, (1990)