CONVERGENCE OF FINITE-ELEMENT METHOD FOR A CLASS OF ELASTIC-PLASTIC SOLIDS

被引:10
作者
HAVNER, KS [1 ]
PATEL, HP [1 ]
机构
[1] N CAROLINA STATE UNIV, RALEIGH, NC 27607 USA
关键词
SOLIDS - Mechanical Properties;
D O I
10.1090/qam/449142
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A proof of convergence of the finite-element method in rate-type, quasi-static boundary value problems is presented. The bodies considered may be discretely heterogeneous and elastically anisotropic, their plastic behavior governed by history-dependent, piecewise-linear yield functions and fully coupled hardening rules. Elastic moduli are required to be positive-definite and plstic moduli nonnegative-definite. Precise and complete arguments are given in the case of bodies whose surfaces are piecewise plane.
引用
收藏
页码:59 / 68
页数:10
相关论文
共 22 条
[1]  
BISHOP JFW, 1951, PHILOS MAG, V42, P1298
[2]  
Budiansky B, 1961, P 4 US C APPL MECH, P1175
[3]  
de Donato O., 1973, Computer Methods in Applied Mechanics and Engineering, V2, P107, DOI 10.1016/0045-7825(73)90010-8
[4]   SOME IMPLICATIONS OF WORK HARDENING AND IDEAL PLASTICITY [J].
DRUCKER, DC .
QUARTERLY OF APPLIED MATHEMATICS, 1950, 7 (04) :411-418
[5]  
DRUCKER DC, 1958, P S APPL MATH, V8, P7
[6]  
Havner K. S., 1974, International Journal of Solids and Structures, V10, P853, DOI 10.1016/0020-7683(74)90028-6
[7]  
Havner K. S., 1971, International Journal of Solids and Structures, V7, P1269, DOI 10.1016/0020-7683(71)90067-9
[8]  
Havner K. S., 1971, International Journal of Solids and Structures, V7, P719, DOI 10.1016/0020-7683(71)90089-8
[9]  
Havner K. S., 1973, International Journal of Solids and Structures, V9, P379, DOI 10.1016/0020-7683(73)90087-5