THE H-INFINITY-PROBLEM FOR INFINITE-DIMENSIONAL SEMILINEAR SYSTEMS

被引:4
作者
BARBU, V
机构
[1] Univ of Iasi, Iasi
关键词
HAMILTON-JACOBI EQUATION; HAMILTONIAN SYSTEM; SUP INF PROBLEM; EXPONENTIALLY STABLE SEMIGROUP;
D O I
10.1137/S0363012993244052
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the H-infinity-optimal control problem for semilinear systems in Hilbert spaces in connection with the corresponding H-infinity-problem for the linearized system around an equilibrium state. The result of this paper, which expands some recent results of A. J. van der Schaft, is that if the linearized H-infinity-problem has a suboptimal solution, then a suboptimal solution to the H-infinity-problem for the semilinear system can be constructed in terms of a Hamilton-Jacobi equation.
引用
收藏
页码:1017 / 1027
页数:11
相关论文
共 8 条
[1]   H-INFINITY-CONTROL FOR SEMILINEAR SYSTEMS IN HILBERT-SPACES [J].
BARBU, V .
SYSTEMS & CONTROL LETTERS, 1993, 21 (01) :65-72
[2]  
BENSOUSSAN A, 1992, OPTIMIZATION OPTIMAL, P149
[3]   STATE-SPACE SOLUTIONS TO STANDARD H-2 AND H-INFINITY CONTROL-PROBLEMS [J].
DOYLE, JC ;
GLOVER, K ;
KHARGONEKAR, PP ;
FRANCIS, BA .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (08) :831-847
[4]  
ICHIKAWA A, HINFINITY CONTROL MI
[5]  
van Keulen B., 1993, J MATH SYSTEMS ESTIM, V3, P1
[6]   L2-GAIN ANALYSIS OF NONLINEAR-SYSTEMS AND NONLINEAR STATE FEEDBACK-H-INFINITY CONTROL [J].
VANDERSCHAFT, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (06) :770-784
[7]   ON A STATE-SPACE APPROACH TO NONLINEAR H-INFINITY CONTROL [J].
VANDERSCHAFT, AJ .
SYSTEMS & CONTROL LETTERS, 1991, 16 (01) :1-8
[8]  
[No title captured]