QUASIFINITE HIGHEST WEIGHT MODULES OVER THE LIE-ALGEBRA OF DIFFERENTIAL-OPERATORS ON THE CIRCLE

被引:198
作者
KAC, V
RADUL, A
机构
[1] Mathematics Department, M.I.T., Cambridge, 02139, MA
关键词
D O I
10.1007/BF02096878
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We classify positive energy representations with finite degeneracies of the Lie algebra W1+infinity and construct them in terms of representation theory of the Lie algebra gl(infinity, R(m)) of infinites matrices with finite number of non-zero diagonals over the algebra R(m) = C[t]/(t(m+1)). The unitary ones are classified as well. Similar results are obtained for the sin-algebras.
引用
收藏
页码:429 / 457
页数:29
相关论文
共 12 条
[1]   TRIGONOMETRIC STRUCTURE CONSTANTS FOR NEW INFINITE-DIMENSIONAL ALGEBRAS [J].
FAIRLIE, DB ;
FLETCHER, P ;
ZACHOS, CK .
PHYSICS LETTERS B, 1989, 218 (02) :203-206
[2]   VERTEX OPERATOR REPRESENTATION OF SOME QUANTUM TORI LIE-ALGEBRAS [J].
GOLENISHCHEVAKUTUZOVA, M ;
LEBEDEV, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (02) :403-416
[3]  
Kac V. G., 1990, INFINITE DIMENSIONAL
[4]   SPIN AND WEDGE REPRESENTATIONS OF INFINITE-DIMENSIONAL LIE-ALGEBRAS AND GROUPS - (CLIFFORD ALGEBRA-SPIN REPRESENTATION-AFFINE KAC-MOODY LIE ALGEBRA-HIGHEST WEIGHT REPRESENTATION-LINE BUNDLE) [J].
KAC, VG ;
PETERSON, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1981, 78 (06) :3308-3312
[5]  
KHESIN B, 1993, CR ACAD SCI I-MATH, V316, P621
[6]   2-COCYCLES ON THE ALGEBRA OF DIFFERENTIAL-OPERATORS [J].
LI, WL .
JOURNAL OF ALGEBRA, 1989, 122 (01) :64-80
[7]  
LUKYANOV SL, 1988, ZH EKSP TEOR FIZ+, V94, P23
[8]   W-INFINITY AND THE RACAH-WIGNER ALGEBRA [J].
POPE, CN ;
SHEN, X ;
ROMANS, LJ .
NUCLEAR PHYSICS B, 1990, 339 (01) :191-221
[9]  
RADUL A, 1992, PHYS LETT B, V274, P317
[10]  
RADUL A, 1991, FUNCT ANAL APPL, V25, P86