ROLE OF ABSCISIC-ACID IN DROUGHT-INDUCED FREEZING TOLERANCE, COLD-ACCLIMATION, AND ACCUMULATION OF LT178 AND RAB18 PROTEINS IN ARABIDOPSIS-THALIANA

被引:240
作者
MANTYLA, E [1 ]
LANG, V [1 ]
PALVA, ET [1 ]
机构
[1] SWEDISH UNIV AGR SCI, UPPSALA GENET CTR, DEPT MOLEC GENET, S-75007 UPPSALA, SWEDEN
关键词
D O I
10.1104/pp.107.1.141
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To study the role of abscisic acid (ABA) in development of freezing tolerance of Arabidopsis thaliana, we exposed wild-type plants, the ABA-insensitive mutant abi1, and the ABA-deficient mutant aba-1 to low temperature (LT), exogenous ABA, and drought. Exposure of A. thaliana to drought stress resulted in a similar increase in freezing tolerance as achieved by ABA treatment or the initial stages of acclimation, suggesting overlapping responses to these environmental cues. ABA appears to be involved in both LT- and drought-induced freezing tolerance, since both ABA mutants were impaired in their responses to these stimuli. To correlate enhanced freezing tolerance with the presence of stress-specific proteins, we characterized the accumulation of RAB18 and LT178 in two ecotypes, Landsberg erecta and Coimbra, and in the ABA mutants during stress response. LT- and drought-induced accumulation of RAB18 coincided with the increase in freezing tolerance and was blocked in the cold-acclimation-deficient ABA mutants. In contrast, LT178 accumulated in all genotypes in response to LT and drought and was always present when the plants were freezing tolerant. This suggests that development of freezing tolerance in A. thaliana requires ABA-controlled processes in addition to ABA-independent factors.
引用
收藏
页码:141 / 148
页数:8
相关论文
共 55 条
[1]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]  
CATTIVELLI L, 1992, SOC EXP BIOL SEMIN S, V49, P267, DOI 10.1017/CBO9780511600395.014
[4]   INVOLVEMENT OF ABSCISIC-ACID IN POTATO COLD-ACCLIMATION [J].
CHEN, HH ;
LI, PH ;
BRENNER, ML .
PLANT PHYSIOLOGY, 1983, 71 (02) :362-365
[5]   ABSCISIC ACID-INDUCED FREEZING RESISTANCE IN CULTURED PLANT-CELLS [J].
CHEN, THH ;
GUSTA, LV .
PLANT PHYSIOLOGY, 1983, 73 (01) :71-75
[6]   A CDNA-BASED COMPARISON OF DEHYDRATION-INDUCED PROTEINS (DEHYDRINS) IN BARLEY AND CORN [J].
CLOSE, TJ ;
KORTT, AA ;
CHANDLER, PM .
PLANT MOLECULAR BIOLOGY, 1989, 13 (01) :95-108
[7]   CORRELATION BETWEEN COLD-INDUCED AND DROUGHT-INDUCED FROST HARDINESS IN WINTER-WHEAT AND RYE VARIETIES [J].
CLOUTIER, Y ;
SIMINOVITCH, D .
PLANT PHYSIOLOGY, 1982, 69 (01) :256-258
[8]   CHANGES OF PROTEIN-PATTERNS IN WINTER RYE FOLLOWING COLD-ACCLIMATION AND DESICCATION STRESS [J].
CLOUTIER, Y .
CANADIAN JOURNAL OF BOTANY-REVUE CANADIENNE DE BOTANIQUE, 1984, 62 (02) :366-371
[9]   RESPONSE OF TOMATO PLANTS TO STRESSFUL TEMPERATURES INCREASE IN ABSCISIC-ACID CONCENTRATIONS [J].
DAIE, J ;
CAMPBELL, WF .
PLANT PHYSIOLOGY, 1981, 67 (01) :26-29
[10]   COMMON AMINO-ACID SEQUENCE DOMAINS AMONG THE LEA PROTEINS OF HIGHER-PLANTS [J].
DURE, L ;
CROUCH, M ;
HARADA, J ;
HO, THD ;
MUNDY, J ;
QUATRANO, R ;
THOMAS, T ;
SUNG, ZR .
PLANT MOLECULAR BIOLOGY, 1989, 12 (05) :475-486