SPECTRAL AND FINITE-DIFFERENCE SOLUTIONS OF THE BURGERS-EQUATION

被引:167
作者
BASDEVANT, C
DEVILLE, M
HALDENWANG, P
LACROIX, JM
OUAZZANI, J
PEYRET, R
ORLANDI, P
PATERA, AT
机构
[1] CATHOLIC UNIV LOUVAIN,UNITE MECAN APPL,B-1348 LOUVAIN LA NEUVE,BELGIUM
[2] UNIV AIX MARSEILLE 1,CTR ST JEROME,DEPT HELIOPHYS,F-13397 MARSEILLE 4,FRANCE
[3] UNIV ROME,DIPARTIMENTO MECCAN & AERONAUT,I-00184 ROME,ITALY
[4] MIT,DEPT MECH ENGN,CAMBRIDGE,MA 02139
[5] UNIV NICE,DEPT MATH,F-06000 NICE,FRANCE
关键词
FLUID MECHANICS - MATHEMATICAL TECHNIQUES - Finite Difference Method - STATISTICAL METHODS;
D O I
10.1016/0045-7930(86)90036-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Spectral methods (Fourier Galerkin, Fourier pseudospectral, Chebyshev Tau, Chebyshev collocation, spectral element) and standard finite differences are applied to solve the Burgers equation with small viscosity (v equals 1/100 pi ). This equation admits a (nonsingular) thin internal layer that must be resolved if accurate numerical solutions are to be obtained. From the reported computations, it appears that spectral schemes offer the best accuracy, especially if coordinate transformation or elemental subdivision is used to resolve the regions of large variation of the dependent variable.
引用
收藏
页码:23 / 41
页数:19
相关论文
共 15 条