LEVEL-SPACING DISTRIBUTIONS AND THE AIRY KERNEL

被引:1247
作者
TRACY, CA
WIDOM, H
机构
[1] UNIV CALIF DAVIS, INST THEORET DYNAM, DAVIS, CA 95616 USA
[2] UNIV CALIF SANTA CRUZ, DEPT MATH, SANTA CRUZ, CA 95064 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/BF02100489
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Scaling level-spacing distribution functions in the ''bulk of the spectrum'' in random matrix models of N x N hermitian matrices and then going to the limit N --> infinity leads to the Fredholm determinant of the sine kernel sin pi(x - y)/pi(x - y). Similarly a scaling limit at the ''edge of the spectrum'' leads to the Airy kernel [Ai(x) Ai(y) - Ai'(x) Ai(y)]/(x - y). In this paper we derive analogues for this Airy kernel of the following properties of the sine kernel: the completely integrable system of P.D.E.'s found by Jimbo, Miwa, Mori, and Sato; the expression, in the case of a single interval, of the Fredholm determinant in terms of a Painleve transcendent; the existence of a commuting differential operator; and the fact that this operator can be used in the derivation of asymptotics, for general n, of the probability that an interval contains precisely n eigenvalues.
引用
收藏
页码:151 / 174
页数:24
相关论文
共 33 条
[1]   EXACT LINEARIZATION OF A PAINLEVE TRANSCENDENT [J].
ABLOWITZ, MJ ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1977, 38 (20) :1103-1106
[2]   ASYMPTOTICS OF LEVEL-SPACING DISTRIBUTIONS FOR RANDOM MATRICES [J].
BASOR, EL ;
TRACY, CA ;
WIDOM, H .
PHYSICAL REVIEW LETTERS, 1992, 69 (01) :5-8
[3]   UNIVERSAL SCALING OF THE TAIL OF THE DENSITY OF EIGENVALUES IN RANDOM MATRIX MODELS [J].
BOWICK, MJ ;
BREZIN, E .
PHYSICS LETTERS B, 1991, 268 (01) :21-28
[4]   A CONNECTION FORMULA FOR THE 2ND PAINLEVE TRANSCENDENT [J].
CLARKSON, PA ;
MCLEOD, JB .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 103 (02) :97-138
[5]  
CLARKSON PA, 1992, NATO ADV SCI I B-PHY, V278, P1
[6]   FREDHOLM DETERMINANTS AND INVERSE SCATTERING PROBLEMS [J].
DYSON, FJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 47 (02) :171-183
[7]   STATISTICAL THEORY OF ENERGY LEVELS OF COMPLEX SYSTEMS .3. [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (01) :166-&
[8]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[9]  
DYSON FJ, 1962, J MATH PHYS, V3, P157, DOI 10.1063/1.1703774
[10]  
DYSON FJ, IN PRESS P C HON YAN