LOCAL AND NONLOCAL NONLINEARITY IN RAYLEIGH-WAVES

被引:32
作者
HAMILTON, MF
ILINSKY, YA
ZABOLOTSKAYA, EA
机构
[1] Department of Mechanical Engineering, The University of Texas at Austin, Austin
关键词
D O I
10.1121/1.412132
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The kernel of the integral operator in the nonlinear term of an evolution equation for Rayleigh waves in isotropic solids [E. A. Zabolotskaya, J. Acoust. Soc. Am. 91, 2569-2575 (1992)] is investigated theoretically. The kernel is separated into two parts, one for local nonlinearity and the other for nonlocal nonlinearity. An explicit time domain expression is derived for each part. © 1995, Acoustical Society of America. All rights reserved.
引用
收藏
页码:882 / 890
页数:9
相关论文
共 11 条
[1]  
Bakhvalov N., 1987, NONLINEAR THEORY SOU
[4]   EVOLUTION-EQUATIONS FOR NONLINEAR RAYLEIGH-WAVES [J].
HAMILTON, MF ;
ILINSKY, YA ;
ZABOLOTSKAYA, EA .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1995, 97 (02) :891-897
[5]   ON THE EXISTENCE OF STATIONARY NONLINEAR RAYLEIGH-WAVES [J].
HAMILTON, MF ;
ILINSKY, YA ;
ZABOLOTSKAYA, EA .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1993, 93 (06) :3089-3095
[6]  
HUNTER JK, 1989, CURRENT PROGR HYPERB, P185
[7]   NON-LINEAR SURFACE-WAVES ON AN ELASTIC SOLID [J].
LARDNER, RW .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1983, 21 (11) :1331-1342
[8]   WAVEFORM EVOLUTION FOR NONLINEAR SURFACE ACOUSTIC-WAVES [J].
PARKER, DF .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1988, 26 (01) :59-75
[9]   ANALYSIS AND COMPUTATION FOR NONLINEAR ELASTIC SURFACE-WAVES OF PERMANENT FORM [J].
PARKER, DF ;
TALBOT, FM .
JOURNAL OF ELASTICITY, 1985, 15 (04) :389-426
[10]   HARMONIC-GENERATION IN PLANE AND CYLINDRICAL NONLINEAR RAYLEIGH-WAVES [J].
SHULL, DJ ;
HAMILTON, MF ;
ILINSKY, YA ;
ZABOLOTSKAYA, EA .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1993, 94 (01) :418-427