PROBABILITY-DISTRIBUTION FUNCTIONS IN TURBULENT CONVECTION

被引:31
作者
BALACHANDAR, S [1 ]
SIROVICH, L [1 ]
机构
[1] BROWN UNIV, CTR FLUID MECH, PROVIDENCE, RI 02912 USA
来源
PHYSICS OF FLUIDS A-FLUID DYNAMICS | 1991年 / 3卷 / 05期
关键词
D O I
10.1063/1.857968
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Results of an extensive investigation of probability distribution functions (pdf's) for Rayleigh-Benard convection, in the hard turbulence regime, are presented. It is seen that the pdf's exhibit a high degree of internal universality. In certain cases this universality is established within two Kolmogorov scales of a boundary. A discussion of the factors leading to universality is presented.
引用
收藏
页码:919 / 927
页数:9
相关论文
共 36 条
[1]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[2]  
Balachandar S., 1989, Journal of Scientific Computing, V4, P219, DOI 10.1007/BF01061502
[3]   INACTIVE MOTION AND PRESSURE FLUCTUATIONS IN TURBULENT BOUNDARY LAYERS [J].
BRADSHAW, P .
JOURNAL OF FLUID MECHANICS, 1967, 30 :241-&
[4]  
CARROLL JJ, 1976, J ATMOS SCI, V33, P642, DOI 10.1175/1520-0469(1976)033<0642:TTSOTC>2.0.CO
[5]  
2
[6]   SCALING OF HARD THERMAL TURBULENCE IN RAYLEIGH-BENARD CONVECTION [J].
CASTAING, B ;
GUNARATNE, G ;
HESLOT, F ;
KADANOFF, L ;
LIBCHABER, A ;
THOMAE, S ;
WU, XZ ;
ZALESKI, S ;
ZANETTI, G .
JOURNAL OF FLUID MECHANICS, 1989, 204 :1-30
[7]   PROBABILITY-DISTRIBUTION OF A STOCHASTICALLY ADVECTED SCALAR FIELD [J].
CHEN, HD ;
CHEN, SY ;
KRAICHNAN, RH .
PHYSICAL REVIEW LETTERS, 1989, 63 (24) :2657-2660
[8]  
Drazin P.G., 2004, HYDRODYNAMIC STABILI, DOI [10.1017/CBO9780511616938, DOI 10.1017/CBO9780511616938]
[9]  
EIDSON TM, 1986, NOTES NUMERICAL FLUI, V15, P188
[10]   EMPIRICAL AND STOKES EIGENFUNCTIONS AND THE FAR-DISSIPATIVE TURBULENT SPECTRUM [J].
FOIAS, C ;
MANLEY, O ;
SIROVICH, L .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (03) :464-467